
Debian Developer’s Reference
リリース 14.3

Developer’s Reference Team

2026-01-18

i

目次

第 1章 この文書が扱う範囲について 3

第 2章 Applying to Become a Member 5
2.1 さあ、はじめよう . 5
2.2 Debianメンター (mentors)とスポンサー (sponsors)について 6
2.3 Registering as a Debian member . 6

第 3章 Debian開発者の責務 9
3.1 パッケージメンテナの責務 . 9

3.1.1 次期安定版 (stable)リリースへの作業 . 9
3.1.2 安定版 (stable)にあるパッケージをメンテナンスする 9
3.1.3 リリースクリティカルバグに対処する . 9
3.1.4 開発元/上流 (upstream)の開発者との調整 . 10

3.2 管理者的な責務 . 10
3.2.1 あなたの Debianに関する情報をメンテナンスする 11
3.2.2 公開鍵をメンテナンスする . 11
3.2.3 投票をする . 11
3.2.4 優雅に休暇を取る . 12
3.2.5 脱退について . 12
3.2.6 リタイア後に再加入する . 13

第 4章 Resources for Debian Members 15
4.1 メーリングリスト . 15

4.1.1 利用の基本ルール . 15
4.1.2 開発の中心となっているメーリングリスト . 15
4.1.3 特別なメーリングリスト . 16
4.1.4 新規に開発関連のメーリングリストの開設を要求する 16

4.2 IRCチャンネル . 16
4.3 ドキュメント化 . 17
4.4 Debianのマシン群 . 17

4.4.1 バグ報告サーバ . 18
4.4.2 ftp-masterサーバ . 18
4.4.3 www-masterサーバ . 18
4.4.4 peopleウェブサーバ . 18
4.4.5 salsa.debian.org: Git repositories and collaborative development platform 18
4.4.6 GitHub.com: Submitting pull requests to upstream repositories 19
4.4.7 複数のディストリビューション利用のために chrootを使う 19

4.5 開発者データベース . 19
4.6 Debianアーカイブ . 20

4.6.1 セクション . 22

4.6.2 アーキテクチャ . 22
4.6.3 パッケージ . 23
4.6.4 ディストリビューション . 23

4.6.4.1 安定版 (stable)、テスト版 (testing)、不安定版 (unstable) 23
4.6.4.2 テスト版ディストリビューションについてのさらなる情報 24
4.6.4.3 試験版 (experimental) . 25

4.6.5 リリースのコードネーム . 25
4.7 Debianミラーサーバ . 26
4.8 Incomingシステム . 26
4.9 パッケージ情報 . 27

4.9.1 ウェブ上から . 27
4.9.2 dak lsユーティリティ . 27

4.10 Debianパッケージトラッカー . 28
4.11 Developer's packages overview . 28
4.12 Debianでの FusionForgeの導入例: Alioth . 29
4.13 Goodies for Debian Members . 29

第 5章 パッケージの取扱い方 31
5.1 新規パッケージ . 31
5.2 パッケージの変更を記録する . 32
5.3 パッケージをテストする . 32
5.4 ソースパッケージの概要 . 33
5.5 ディストリビューションを選ぶ . 34

5.5.1 特別な例: 安定版 (stable)と旧安定版 (oldstable)ディストリビューションへ

アップロードする . 34
5.5.2 Special case: the stable-updates suite . 35
5.5.3 特別な例: testing/testing-proposed-updatesへアップロードする 36

5.6 パッケージをアップロードする . 36
5.6.1 Source and binary uploads . 36
5.6.2 ftp-masterにアップロードする . 37
5.6.3 遅延アップロード . 37
5.6.4 セキュリティアップロード . 37
5.6.5 他のアップロードキュー . 37
5.6.6 Notifications . 38

5.7 パッケージのセクション、サブセクション、優先度を指定する 38
5.8 バグの取扱い . 39

5.8.1 バグの監視 . 39
5.8.2 バグへの対応 . 39
5.8.3 バグを掃除する . 40
5.8.4 新規アップロードでバグがクローズされる時 . 41
5.8.5 セキュリティ関連バグの取扱い . 42

5.8.5.1 セキュリティ追跡システム . 43
5.8.5.2 秘匿性 . 43
5.8.5.3 セキュリティ勧告 . 44
5.8.5.4 セキュリティ問題に対処するパッケージを用意する 44
5.8.5.5 修正したパッケージをアップロードする 46

5.9 パッケージの移動、削除、リネーム、放棄、引き取り、再導入 46

ii

5.9.1 パッケージの移動 . 46
5.9.2 パッケージの削除 . 47

5.9.2.1 Incomingからパッケージを削除する . 48
5.9.3 パッケージをリプレースあるいはリネームする . 48
5.9.4 パッケージを放棄する . 48
5.9.5 パッケージを引き取る . 49
5.9.6 パッケージの再導入 . 49

5.10 移植作業、そして移植できるようにすること . 50
5.10.1 移植作業者に対して協力的になる . 50
5.10.2 移植作業者のアップロード (porter upload)に関するガイドライン 51

5.10.2.1 再コンパイル、あるいは binary-only NMU 52
5.10.2.2 あなたが移植作業者の場合、source NMUを行う時は何時か 52

5.10.3 移植用のインフラと自動化 . 53
5.10.3.1 メーリングリストとウェブページ . 53
5.10.3.2 移植用ツール . 53
5.10.3.3 wanna-build . 54

5.10.4 あなたのパッケージが移植可能なものではない場合 54
5.10.5 non-freeのパッケージを auto-build可能であるとマークする 55

5.11 Non-Maintainer Upload (NMU) . 55
5.11.1 いつ、どうやって NMUを行うか . 55
5.11.2 NMUと debian/changelog . 57
5.11.3 DELAYED/キューを使う . 57
5.11.4 メンテナの視点から見た NMU . 58
5.11.5 ソース NMU vsバイナリのみの NMU (binNMU) 58
5.11.6 NMUと QAアップロード . 59
5.11.7 NMUとチームアップロード . 59

5.12 Package Salvaging . 59
5.12.1 When a package is eligible for package salvaging . 60
5.12.2 How to salvage a package . 60

5.13 共同メンテナンス . 61
5.14 テスト版ディストリビューション . 62

5.14.1 基本 . 62
5.14.2 不安定版からの更新 . 62

5.14.2.1 時代遅れ (Out-of-date) . 63
5.14.2.2 テスト版からの削除 . 64
5.14.2.3 循環依存 . 64
5.14.2.4 テスト版 (testing)にあるパッケージへの影響 64
5.14.2.5 詳細について . 64

5.14.3 直接テスト版を更新する . 65
5.14.4 よく聞かれる質問とその答え (FAQ) . 66

5.14.4.1 リリースクリティカルバグとは何ですか、どうやって数えるのですか? . . 66
5.14.4.2 どのようにすれば、他のパッケージを壊す可能性があるパッケージをテス

ト版 (testing)へインストールできますか? 66
5.15 The Stable backports archive . 66

5.15.1 基本 . 66
5.15.2 Exception to the testing-first rule . 67
5.15.3 Who can maintain packages in the stable-backports archive? 67

iii

5.15.4 When can one start uploading to stable-backports? . 67
5.15.5 How long must a package be maintained when uploaded to stable-backports? 67
5.15.6 How often shall one upload to stable-backports? . 67
5.15.7 How can one learn more about backporting? . 68

第 6章 パッケージ化のベストプラクティス 69
6.1 debian/rulesについてのベストプラクティス . 69

6.1.1 ヘルパースクリプト . 69
6.1.2 複数のバイナリパッケージ . 70

6.2 debian/controlのベストプラクティス . 70
6.2.1 パッケージ説明文の基本的なガイドライン . 70
6.2.2 パッケージの概要、あるいは短い説明文 . 71
6.2.3 長い説明文 (long description) . 71
6.2.4 開発元のホームページ . 72
6.2.5 バージョン管理システムの場所 . 73

6.2.5.1 Vcs-Browser . 73
6.2.5.2 Vcs-* . 73

6.3 debian/changelogのベストプラクティス . 74
6.3.1 役立つ changelogのエントリを書く . 74
6.3.2 Selecting the upload urgency . 74
6.3.3 changelogのエントリに関するよくある誤解 . 74
6.3.4 changelogのエントリ中のよくある間違い . 75
6.3.5 NEWS.Debianファイルで changelogを補足する . 76

6.4 セキュリティに関するベストプラクティス . 76
6.5 メンテナスクリプトのベストプラクティス . 77
6.6 debconfによる設定管理 . 77

6.6.1 debconfを乱用しない . 78
6.6.2 作者と翻訳者に対する雑多な推奨 . 78

6.6.2.1 正しい英語を書く . 78
6.6.2.2 翻訳者へ丁寧に接する . 78
6.6.2.3 誤字やミススペルを修正する際に fuzzyを取る 79
6.6.2.4 インターフェイスについて仮定をしない 80
6.6.2.5 一人称を使わない . 80
6.6.2.6 性差に対して中立であれ . 80

6.6.3 テンプレートのフィールド定義 . 80
6.6.3.1 Type . 80
6.6.3.2 Description: shortおよび extended説明文 82
6.6.3.3 Choices . 82
6.6.3.4 Default . 82

6.6.4 Template fields specific style guide . 82
6.6.4.1 Typeフィールド . 82
6.6.4.2 Descriptionフィールド . 83
6.6.4.3 Choicesフィールド . 83
6.6.4.4 Defaultフィールド . 84

6.7 国際化 . 84
6.7.1 debconfの翻訳を取り扱う . 84
6.7.2 ドキュメントの国際化 . 85

iv

6.8 Best practices for debian/patches . 85
6.9 パッケージ化に於ける一般的なシチュエーション . 86

6.9.1 autoconf/automakeを使っているパッケージ . 86
6.9.2 ライブラリ . 86
6.9.3 ドキュメント化 . 86
6.9.4 特定の種類のパッケージ . 87
6.9.5 アーキテクチャ非依存のデータ . 87
6.9.6 ビルド中に特定のロケールが必要 . 87
6.9.7 移行パッケージを deboprhanに適合するようにする 88
6.9.8 .orig.tar.{gz,bz2,xz}についてのベストプラクティス 88

6.9.8.1 手が入れられていないソース (Pristine source) 88
6.9.8.2 upstreamのソースをパッケージしなおす 89
6.9.8.3 バイナリファイルの変更 . 90

6.9.9 デバッグパッケージのベストプラクティス . 90
6.9.9.1 Automatically generated debug packages . 90
6.9.9.2 Manual -dbg packages . 91

6.9.10 メタパッケージのベストプラクティス . 91

第 7章 パッケージ化、そして… 93
7.1 バグ報告 . 93

7.1.1 一度に大量のバグを報告するには (mass bug filing) 94
7.1.1.1 Usertag . 94

7.2 品質維持の努力 . 95
7.2.1 日々の作業 . 95
7.2.2 バグ潰しパーティ (BSP) . 95

7.3 他のメンテナに連絡を取る . 95
7.4 活動的でない、あるいは連絡が取れないメンテナに対応する 96
7.5 Debian開発者候補に対応する . 97

7.5.1 パッケージのスポンサーを行う . 97
7.5.1.1 新しいパッケージのスポンサーを行う . 98
7.5.1.2 既存パッケージの更新をスポンサーする 99

7.5.2 Granting upload permissions to DMs . 100
7.5.3 新たな開発者を支持する (advocate) . 100
7.5.4 新規メンテナ申請 (new maintainer applications)を取り扱う 100

第 8章 国際化と翻訳 101
8.1 どの様にして Debianでは翻訳が取り扱われているか . 101
8.2 メンテナへの I18N & L10N FAQ . 102

8.2.1 翻訳された文章を得るには . 102
8.2.2 どの様にして提供された翻訳をレビューするか . 102
8.2.3 どの様にして翻訳してもらった文章を更新するか 102
8.2.4 どの様にして翻訳関連のバグ報告を取り扱うか . 102

8.3 翻訳者への I18N & L10N FAQ . 103
8.3.1 どの様にして翻訳作業を支援するか . 103
8.3.2 どの様にして提供した翻訳をパッケージに含めてもらうか 103

8.4 l10nに関する現状でのベストプラクティス . 103

第 9章 Debianメンテナツールの概要 105

v

9.1 主要なツール . 105
9.1.1 dpkg-dev . 105
9.1.2 debconf . 105
9.1.3 fakeroot . 106

9.2 パッケージチェック (lint)用ツール . 106
9.2.1 lintian . 106
9.2.2 lintian-brush . 106
9.2.3 piuparts . 106
9.2.4 debdiff . 107
9.2.5 diffoscope . 107
9.2.6 duck . 107
9.2.7 adequate . 107
9.2.8 i18nspector . 108
9.2.9 cme . 108
9.2.10 licensecheck . 108
9.2.11 blhc . 108

9.3 debian/rulesの補助ツール . 108
9.3.1 debhelper . 108
9.3.2 dh-make . 109
9.3.3 equivs . 109

9.4 パッケージ作成ツール . 109
9.4.1 git-buildpackage . 109
9.4.2 debootstrap . 109
9.4.3 pbuilder . 110
9.4.4 sbuild . 110

9.5 パッケージのアップロード用ツール . 110
9.5.1 dupload . 110
9.5.2 dput . 110
9.5.3 dcut . 110

9.6 メンテナンスの自動化 . 110
9.6.1 devscripts . 111
9.6.2 reportbug . 111
9.6.3 autotools-dev . 111
9.6.4 dpkg-repack . 111
9.6.5 alien . 111
9.6.6 dpkg-dev-el . 112
9.6.7 dpkg-depcheck . 112
9.6.8 debputy . 112

9.7 移植用ツール . 112
9.7.1 dpkg-cross . 113

9.8 ドキュメントと情報について . 113
9.8.1 debian-policy . 113
9.8.2 doc-debian . 113
9.8.3 developers-reference . 114
9.8.4 maint-guide . 114
9.8.5 debmake-doc . 114
9.8.6 packaging-tutorial . 114

vi

9.8.7 how-can-i-help . 114
9.8.8 docbook-xml . 114
9.8.9 debiandoc-sgml . 115
9.8.10 debian-keyring . 115
9.8.11 debian-el . 115

vii

Debian Developer’s Reference,リリース 14.3

Developer's Reference Team <developers-reference@packages.debian.org>

• Copyright© 2019 - 2026 Holger Levsen

• Copyright© 2015 - 2020 Hideki Yamane

• Copyright© 2008 - 2015 Lucas Nussbaum

• Copyright© 2004 - 2007 Andreas Barth

• Copyright© 2002 - 2009 Raphaël Hertzog

• Copyright© 1998 - 2003 Adam Di Carlo

• Copyright© 1997 - 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2, or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty
of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses/GPL-2 in the Debian dis-
tribution or on the World Wide Web at the GNU web site. You can also obtain it by writing to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

This is Debian Developer's Reference version 14.3, released on 2026-01-18.

If you want to print this reference, you should use the pdf version. This manual is also available in some other
languages.

1

mailto:developers-reference@packages.debian.org

3

第1章 この文書が扱う範囲について

The purpose of this document is to provide an overview of the recommended procedures and the available resources
for Debian developers and maintainers.

The procedures discussed within include how to become a member (Applying to Become a Member); how to create
new packages (新規パッケージ) and how to upload packages (パッケージをアップロードする); how to handle
bug reports (バグの取扱い); how to move, remove, or orphan packages (パッケージの移動、削除、リネーム、
放棄、引き取り、再導入); how to port packages (移植作業、そして移植できるようにすること); and how and
when to do interim releases of other maintainers' packages (Non-Maintainer Upload (NMU)).

また、このリファレンスで触れるリソースには、メーリングリスト (メーリングリスト)およびサーバ (Debian
のマシン群)、Debianアーカイブの構成に関する解説 (Debianアーカイブ)、パッケージのアップロードを
受け付ける様々なサーバの説明 (ftp-masterにアップロードする)、パッケージの品質を高めるために開発者
が利用できるリソースについての解説 (Debianメンテナツールの概要)などがあります。

初めに明らかにしておきたいのですが、このリファレンスは Debianパッケージに関する技術的な詳細や、
Debianパッケージの作成方法を説明するものではありません。また、このリファレンスは Debianに含ま
れるソフトウェアが準拠すべき基準を詳細に解説するようなものでもありません。その様な情報について

は全て、Debianポリシーマニュアルに記述されています。

さらに、この文書は公式なポリシーを明らかにするものではありません。含まれているのは Debianシステ
ムに関する記述と、一般的な合意がなされたベストプラクティスに関する記述です。すなわち「規範」文

書と呼ばれるものではない、ということです。

https://www.debian.org/doc/debian-policy/

5

第2章 Applying to Become a Member

2.1 さあ、はじめよう
So, you've read all the documentation, you've gone through the Debian New Maintainers' Guide (or its successor,
Guide for Debian Maintainers), understand what everything in the hello example package is for, and you're about
to Debianize your favorite piece of software. How do you actually become a Debian developer so that your work
can be incorporated into the Project?

Firstly, subscribe to debian-devel@lists.debian.org if you haven't already. Send the word subscribe in
the Subject of an email to debian-devel-REQUEST@lists.debian.org. In case of problems, contact the list
administrator at listmaster@lists.debian.org. More information on available mailing lists can be found
in メーリングリスト. debian-devel-announce@lists.debian.org is another list, which is mandatory for
anyone who wishes to follow Debian's development.

参加後、何かコーディングを始める前に、しばらくの間「待ち」(投稿せずに読むだけ)の状態でいるのが
良いでしょう。それから、重複作業を避けるために何の作業をしようとしているのか表明をする必要があ

ります。

もう一つ、購読すると良いのが debian-mentors@lists.debian.orgです。詳細は Debianメンター (men-
tors)とスポンサー (sponsors)についてを参照してください。IRCチャンネル #debianも役に立つでしょ

う。IRCチャンネルを見てください。

何らかの方法で Debianに対して貢献したいと思った時、同じような作業に従事している既存の Debianメン
テナにコンタクトしてみてください。そうすれば経験豊かな開発者から学ぶことができます。例えば、既に

あるソフトウェアを Debian用にパッケージ化するのに興味を持っている場合、スポンサーを探しましょう。
スポンサーはあなたと一緒にパッケージ化作業を手伝い、あなたの作業が満足する出来になったら Debian
アーカイブにパッケージをアップロードしてくれます。スポンサーは、debian-mentors@lists.debian.

orgメーリングリストへパッケージとあなた自身の説明とスポンサーを探していることをメールして見つけ

ましょう (詳細についてはパッケージのスポンサーを行うおよび https://wiki.debian.org/DebianMentorsFaq
を参照)。さらに、Debianを他のアーキテクチャやカーネルへ移植するのに興味を持っている場合、移植関
連のメーリングリストに参加して、どうやって始めればいいのかを尋ねましょう。最後に、ドキュメント

や品質保証 (Quality Assuarance、QA)の作業に興味がある場合は、この様な作業を行っているメンテナ達
の集まりに参加して、パッチや改善案を送ってください。

メールアドレスのローカルパートが非常に一般的な場合、落とし穴にハマる可能性があります。mail、admin、
root、masterのような単語は使わないようにするべきです。詳しくは https://www.debian.org/MailingLists/
を参照してください。

https://www.debian.org/doc/maint-guide/
https://www.debian.org/doc/manuals/debmake-doc/
https://wiki.debian.org/DebianMentorsFaq
https://www.debian.org/MailingLists/

Debian Developer’s Reference,リリース 14.3

2.2 Debianメンター (mentors)とスポンサー (sponsors)について
メーリングリスト debian-mentors@lists.debian.orgが、パッケージ化の第一歩目や他の開発者と調整

が必要な問題などで手助けを必要としている新米メンテナに用意されています。新たな開発者は皆、この

メーリングリストに参加することをお勧めします (詳細はメーリングリストを参照してください)。

一対一での指導 (つまり、プライベートなメールのやり取りで)の方が良い、という人もこのメーリングリ
ストに投稿しましょう。経験豊かな開発者が助けになってくれるはずです。

In addition, if you have some packages ready for inclusion in Debian, but are waiting for your new member appli-
cation to go through, you might be able find a sponsor to upload your package for you. Sponsors are people who
are official Debian Developers, and who are willing to criticize and upload your packages for you. Please read the
debian-mentors FAQ at https://wiki.debian.org/DebianMentorsFaqfirst.

メンターあるいはスポンサーになりたいという人は、Debian開発者候補に対応するでより詳細な情報が手
に入ります。

2.3 Registering as a Debian member
Before you decide to register with Debian, you will need to read all the information available at the New Members
Corner. It describes in detail the preparations you have to do before you can register to become a Debian member.
For example, before you apply, you have to read the Debian Social Contract. Registering as a member means that
you agree with and pledge to uphold the Debian Social Contract; it is very important that member are in accord
with the essential ideas behind Debian. Reading the GNU Manifesto would also be a good idea.

The process of registering as a member is a process of verifying your identity and intentions, and checking your
technical skills. As the number of people working on Debian has grown to over 1000 and our systems are used in
several very important places, we have to be careful about being compromised. Therefore, we need to verify new
members before we can give them accounts on our servers and let them upload packages.

実際に登録する前に、あなたは良い仕事ができる貢献者となり得ることを示さねばなりません。バグ追跡

システムを介してパッチを送ったり、既存の Debian開発者のスポンサーによるパッケージの管理をしばら
くの間行うなどして、これをアピールします。付け加えておくと、我々は貢献してくれる人達が単に自分

のパッケージをメンテナンスするだけにではなく、プロジェクト全体について興味を持ってくれることを

期待しています。バグについての追加情報、できればパッチの提供などによって他のメンテナを手助けで

きるのであれば、早速実行しましょう!

登録に際しては Debianの考え方と技術文書を充分理解している必要があります。さらに、既存のメンテナ
に署名をしてもらった OpenPGP鍵が必要です。まだ OpenPGP鍵に署名してもらっていない場合は、あな
たの鍵に署名してくれる Debian開発者に会いましょう。Key Signing Coordination pageが近くの Debian開
発者を探す手助けとなるでしょう。(近くに Debian開発者がいない場合は、IDチェックを通過する別の方
法としてケースバイケースで例外処理として扱うことも可能です。詳細については身分証明のページを参

照してください)。

If you do not have an OpenPGP key yet, generate one. Every developer needs an OpenPGP key in order to sign and
verify package uploads. You should read the manual for the software you are using, since it has much important
information that is critical to its security. Many more security failures are due to human error than to software
failure or high-powered spy techniques. See 公開鍵をメンテナンスする for more information on maintaining
your public key.

6 第 2章 Applying to Become a Member

https://wiki.debian.org/DebianMentorsFaq
https://www.debian.org/devel/join/newmaint
https://www.debian.org/devel/join/newmaint
https://www.debian.org/social_contract
https://www.gnu.org/gnu/manifesto.html
https://wiki.debian.org/Keysigning
https://www.debian.org/devel/join/nm-step2

Debian Developer’s Reference,リリース 14.3

Debian uses the GNU Privacy Guard (package gnupg version 2 or better) as its baseline standard. You can use
some other implementation of OpenPGP as well. Note that OpenPGP is an open standard based on RFC 9580.

Your key length must be greater than 2048 bits (4096 bits is preferred); there is no reason to use a smaller key, and
doing so would be much less secure.

あなたの公開鍵が subkeys.pgp.netなどの公開鍵サーバにない場合は、新規メンテナ手順 2: 身分証明に
あるドキュメントを読んでください。このドキュメントにはどうやって公開鍵サーバに鍵を登録するのか

が記載されています。新規メンテナグループは、まだ登録されていない場合はあなたの公開鍵をサーバに

登録します。

幾つかの国では、一般市民の暗号関連ソフトウェアの使用について制限をかけています。しかし、このこと

は暗号関連ソフトウェアを暗号化ではなく認証に利用する際には完全に合法であるような場合には、Debian
パッケージメンテナとしての活動を妨げることにはなりません。あなたが認証目的にすら暗号技術の利用

が制限される国に住んでいる、と言う場合は、我々に連絡をしていただければ特別な措置を講じることが

できます。

To apply as a new member, you need an existing Debian Developer to support your application (an advocate).
After you have contributed to Debian for a while, and you want to apply to become a registered developer, an
existing developer with whom you have worked over the past months has to express their belief that you can
contribute to Debian successfully.

When you have found an advocate, have your OpenPGP key signed and have already contributed to Debian for
a while, you're ready to apply. You can simply register on our application page. After you have signed up, your
advocate has to confirm your application. When your advocate has completed this step you will be assigned an
Application Manager who will go with you through the necessary steps of the New Member process. You can
always check your status on the applications status board.

For more details, please consult New Members Corner at the Debian web site. Make sure that you are familiar
with the necessary steps of the New Member process before actually applying. If you are well prepared, you can
save a lot of time later on.

2.3. Registering as a Debian member 7

https://www.rfc-editor.org/rfc/rfc9580.html
https://keyring.debian.org/creating-key.html
https://www.debian.org/devel/join/nm-step2
https://nm.debian.org/newnm.php
https://nm.debian.org/
https://www.debian.org/devel/join/newmaint

9

第3章 Debian開発者の責務

3.1 パッケージメンテナの責務
As a package maintainer, you're supposed to provide high-quality packages that are well integrated into the system
and that adhere to the Debian Policy.

3.1.1 次期安定版 (stable)リリースへの作業

Providing high-quality packages in unstable is not enough; most users will only benefit from your packages when
they are released as part of the next stable release. You are thus expected to collaborate with the release team to
ensure your packages get included.

より具体的には、パッケージがテスト版 (testing)に移行しているかどうかを見守る必要があります (テ
スト版ディストリビューション参照)。テスト期間後に移行が行われない場合は、その理由を分析してこ
れを修正する必要があります。(リリースクリティカルバグや、いくつかのアーキテクチャでビルドに失敗
する場合)あなたのパッケージを修正するのが必要な場合もありますし、依存関係でパッケージが絡まっ
ている状態からの移行を完了する手助けとして、他のパッケージを更新 (あるいは修正、またはテスト版
(testing)からの削除)が必要な事を意味する場合もあります。障害となる理由 (blocker)を判別できない
場合は、リリースチームが先の移行に関する現在の障害に関する情報を与えてくれることでしょう。

3.1.2 安定版 (stable)にあるパッケージをメンテナンスする

パッケージメンテナの作業の大半は、パッケージの更新されたバージョンを不安定版 (unstable)へ放り込
むことですが、現状の安定版 (stable)リリースのパッケージの面倒をみることも伴っています。

安定版 (stable)への変更は推奨されてはいませんが、可能です。セキュリティ問題が報告された時はいつ
でも、セキュリティチームと修正版を提供するように協力する必要があります (セキュリティ関連バグの
取扱い参照)。important (あるいはそれ以上)な重要度のバグが安定版 (stable)のバージョンのパッケージ
に報告されたら、対象となる修正の提供を検討する必要があります。安定版 (stable)リリースマネージャ
に、そのような更新を受け入れられるかどうかを尋ね、それから安定版 (stable)のアップロードを準備す
るなどができます (特別な例: 安定版 (stable)と旧安定版 (oldstable)ディストリビューションへアップロー
ドする参照)。

3.1.3 リリースクリティカルバグに対処する

大抵の場合、パッケージに対するバグ報告についてはバグの取扱いで記述されているように対応する必要

があります。しかしながら、注意を必要とする特別なカテゴリのバグがあります̶リリースクリティカル

バグ (RC bug)と呼ばれるものです。critical、grave、seriousの重要度が付けられている全てのバグ報

告によって、そのパッケージは次の安定版 (stable)リリースに含めるのには適切ではないとされます。そ
のため、(テスト版 (testing)にあるパッケージに影響する場合に) Debianのリリースを遅らせたり、(不安

Debian Developer’s Reference,リリース 14.3

定版 (unstable)にあるパッケージにのみ影響する場合に)テスト版 (testing)への移行をブロックする可
能性があります。最悪の場合は、パッケージの削除を招きます。これが RCバグを可能な限り素早く修正
する必要がある理由です。

もし、何らかの理由で 2週間以内に RCバグを修正できない場合 (例えば時間の制約上、あるいは修正が
難しいなど)、明示的にバグ報告にそれを述べて、他のボランティアを招き入れて参加してもらうためにバ
グに helpタグを打ってください。大量のパッケージがテスト版 (testing)へ移行するのを妨げることが

あるので、RCバグは頻繁に Non-Maintainer Uploadの対象になることに注意してください (Non-Maintainer
Upload (NMU)参照)。

RCバグへの関心の無さは、しばしば QAチームによって、メンテナが正しくパッケージを放棄せずに消え
てしまったサインとして判断されます。MIAチームが関わることもあり、その場合はパッケージが放棄さ
れます (活動的でない、あるいは連絡が取れないメンテナに対応する参照)。

3.1.4 開発元/上流 (upstream)の開発者との調整

A big part of your job as Debian maintainer will be to stay in contact with the upstream developers. Debian users
will sometimes report bugs that are not specific to Debian to our bug tracking system. These bug reports should
be forwarded to the upstream developers so that they can be fixed in a future upstream release. Usually it is best if
you can do this, but alternatively, you may ask the bug submitter to do it.

Debian固有ではないバグの修正はあなたの義務ではないとはいえ、できるなら遠慮なく修正してください。
そのような修正を行った際は、上流の開発者にも送ってください。時折 Debianユーザ／開発者が上流のバ
グを修正するパッチを送ってくる事があります。その場合は、あなたはパッチを確認して上流へ転送する

必要があります。

In cases where a bug report is forwarded upstream, it may be helpful to remember that the bts-link service can help
with synchronizing states between the upstream bug tracker and the Debian one.

ポリシーに準拠したパッケージをビルドするために上流のソースに手を入れる必要がある場合、以降の上

流でのリリースにおいて手を入れなくても済むために、ここで含まれる修正を上流の開発者にとって良い

形で提案する必要があります。必要な変更が何であれ、上流のソースからフォークしないように常に試み

てください。

As most upstreams nowadays use git for version control, in most cases git-buildpackage offers the most convenient
way to create and maintain patches in Debian that so they are submit upstream. For details, see git-buildpackage
man pages about using pq to write and test debian/patches as git commits, and having git remote upstreamvcs
to easily cherry-pick patches to and from upstream git branches.

開発元の開発者らが Debianやフリーソフトウェアコミュニティに対して敵対的である、あるいは敵対的に
なってきているのを見つけた場合は、ソフトウェアを Debianに含める必要があるかを再考しなければなら
なくなるでしょう。時折 Debianコミュニティに対する社会的なコストは、そのソフトウェアがもたらすで
あろう利益に見合わない場合があります。

3.2 管理者的な責務
Debianのような大きさのプロジェクトは、あらゆる事を追いかけられる管理者用のインフラに依っていま
す。プロジェクトメンバーとして、あらゆる物事が滞り無く進むように、あなたにはいくつかの義務があ

ります。

10 第 3章 Debian開発者の責務

Debian Developer’s Reference,リリース 14.3

3.2.1 あなたの Debianに関する情報をメンテナンスする

Debian開発者に関する情報が含まれた LDAPデータベースが https://db.debian.org/にあります。ここに情
報を入力して、情報に変更があった際に更新する必要があります。特に、あなたの debian.orgアドレス宛
メールの転送先アドレスが常に最新になっているのを必ず確認してください。debian-privateの購読をここ
で設定した場合、そのメールを受け取るアドレスについても同様です。

データベースについての詳細は開発者データベースを参照してください。

3.2.2 公開鍵をメンテナンスする

Be very careful with your private keys. Do not place them on any public servers or multiuser machines, such as
the Debian servers (see Debian のマシン群). Back your keys up; keep a copy offline. Read the documentation
that comes with your software; read the PGP FAQ and OpenPGP Best Practices.

鍵が盗難に対してだけではなく、紛失についても安全であることを保証する必要があります。失効証明書

(revocation certificate)を生成してコピーを作って下さい (紙にも出力しておくのがベストです)。これは鍵
を紛失した場合に必要になります。

公開鍵に対して、署名したり身元情報を追加したりなどしたら、鍵を keyring.debian.orgの鍵サーバに

送付することで Debianキーリングを更新できます。更新は少なくとも月に 1度は debian-keyringパッ

ケージメンテナによって実施されます。

まったく新しい鍵を追加したりあるいは古い鍵を削除したりする必要がある時は、別の開発者に署名された

新しい鍵が必要になります。以前の鍵が侵害されたり利用不可能になった場合には、失効証明書 (revocation
certificate)も追加する必要があります。新しい鍵が本当に必要な理由が見当たらない場合は、Keyringメン
テナは新しい鍵を拒否することがあります。詳細は https://keyring.debian.org/replacing_keys.htmlで確認で
きます。

同様に鍵の取り出し方について Registering as a Debian member で説明されています。

Debianでの鍵のメンテナンスについて、より突っ込んだ議論を debian-keyringパッケージ中のドキュメ

ントおよび https://keyring.debian.org/サイトで知ることができます。

3.2.3 投票をする

Debianは本来の意味での民主主義ではありませんが、我々はリーダーの選出や一般投票の承認において民
主主義的なプロセスを利用しています。これらの手続きについては、Debian憲章で規程されています。

毎年のリーダー選挙以外には、投票は定期的には実施されず、軽々しく提案されるものではありません。

提案はそれぞれ debian-vote@lists.debian.orgメーリングリストでまず議論され、プロジェクトの書

記担当者が投票手順を開始する前に複数のエンドースメントを必要とします。

書記担当者が debian-devel-announce@lists.debian.org上で複数回投票の呼びかけを行うので、投票

前の議論を追いかける必要はありません (全開発者がこのメーリングリストを購読することが求められて
います)。民主主義は、人々が投票に参加しないと正常に機能しません。これが我々が全ての開発者に投票
を勧める理由です。投票は GPGによって署名／暗号化されたメールによって行われます。

(過去と現在の)全ての提案リストが Debian投票情報ページで閲覧できます。提案について、どの様に起案
され、支持され、投票が行われたのかという関連情報の確認が可能になっています。

3.2. 管理者的な責務 11

https://db.debian.org/
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/
https://riseup.net/en/security/message-security/openpgp/best-practices
https://keyring.debian.org/replacing_keys.html
https://keyring.debian.org/
https://www.debian.org/devel/constitution
https://www.debian.org/vote/

Debian Developer’s Reference,リリース 14.3

3.2.4 優雅に休暇を取る

予定していた休暇にせよ、それとも単に他の作業で忙しいにせよ、開発者が不在になることがあるのはご

く普通のことです。注意すべき重要な点は、他の開発者達があなたが休暇中であるのを知る必要があるこ

とと、あなたのパッケージについて問題が起こった場合やプロジェクト内での責務を果たすのに問題が生

じたという様な場合は、必要なことを彼らが何であってもできるようにすることです。

通常、これはあなたが休暇中にあなたのパッケージが大きな問題 (リリースクリティカルバグやセキュリ
ティ更新など)となっている場合に、他の開発者に対して NMU (Non-Maintainer Upload (NMU)参照)を許
可することを意味しています。大抵の場合はそれほど致命的なことはおきませんが、他の開発者に対して

あなたが作業できない状態であることを知らせるのは重要です。

他の開発者に通知するために行わなければならないことが 2つあります。まず、debian-private@lists.
debian.orgにサブジェクトの先頭に [VAC]と付けたメールを送り1、いつまで休暇なのかを示しておきま

す。何か問題が起きた際への特別な指示を書いておくこともできます。

他に行うべき事は開発者データベース上であなたを vacationとマークする事です (この情報は Debian開
発者のみがアクセスできます)。休暇から戻った時には vacationフラグを削除するのを忘れないように!

理想的には、休暇にあわせて GPG coordination pagesに登録して、誰かサインを希望している人がいるか
どうかをチェックします。開発者がまだ誰もいないけれども応募に興味を持っている人がいるようなエキ

ゾチックな場所に行く場合、これは特に重要です。

3.2.5 脱退について

Debianプロジェクトから去るのを決めた場合は、以下の手順に従ってください:

• パッケージを放棄するの記述に従って、全てのパッケージを放棄 (orphan)してください。

• 一緒にメンテナンスしているパッケージやチームとしてメンテナンスしているパッケージのUploaders:
フィールドから自身を削除してください。

• @debian.orgメールアドレスの alias (例: press@debian.org)経由でメールを受け取っていて削除した
い場合、Debianシステム管理者に対する RTチケットをオープンしてください。チケットをオープ
ンするには、削除したい aliasのアドレスから、admin@rt.debian.org宛でサブジェクトのどこかに
"Debian RT"と入れて送信します。

• Please remember to also retire from teams, e.g. remove yourself from team wiki pages or salsa groups.

• Use the link https://nm.debian.org/process/emeritus to log in to nm.debian.org, request emeritus status and
write a goodbye message that will be automatically posted on debian-private.

Authentication to the NM site requires an SSO browser certificate. You can generate them on https://sso.
debian.org.

In the case you run into problems opening the retirement process yourself, contact NM front desk using
nm@debian.org

上記のプロセスに従うのは重要です。何故なら活動を停止している開発者を探してパッケージを放棄する

のは、非常に時間と手間がかかることだからです。

1 これは、休暇のメッセージを読みたくない人がメッセージを簡単に振り分け可能にするためです。

12 第 3章 Debian開発者の責務

https://wiki.debian.org/Keysigning
mailto:press@debian.org
https://nm.debian.org/process/emeritus
https://sso.debian.org
https://sso.debian.org

Debian Developer’s Reference,リリース 14.3

3.2.6 リタイア後に再加入する

リタイアした開発者のアカウントは、脱退についての手続きが開始された際に「emeritus」であるとマー
クされ、それ以外の場合は「removed」となります。「emeritus」アカウントになっているリタイアした開発
者は、以下のようにすればアカウントを再度有効にできます:

• Get access to an salsa account (either by remembering the credentials for your old guest account or by
requesting a new one as described at SSO Debian wiki page.

• Mail nm@debian.org for further instructions.

• 短縮された NMプロセスを通過します (リタイアした開発者が P&Pおよび T&Sの肝心な部分を覚え
ているのを確認するためです)。

リタイアした開発者で「removed」アカウントの人は、NMをもう一度通り抜ける必要があります。

3.2. 管理者的な責務 13

https://wiki.debian.org/DebianSingleSignOn#If_you_ARE_NOT_.28yet.29_a_Debian_Developer

15

第4章 Resources for Debian Members

In this chapter you will find a very brief roadmap of the Debian mailing lists, the Debian machines which may be
available to you as a member, and all the other resources that are available to help you in your work.

4.1 メーリングリスト
Debian開発者 (それにユーザ)の間で交わされるやり取りの大半は lists.debian.orgで提供されている

広範囲に渡るメーリングリスト群で行われています。どうやって購読／解除するのか、どうやって投稿す

るか（あるいはしないのか）、どこで過去の投稿を見つけるのか、どうやって過去の投稿の中から探すのか、

どうやってメーリングリスト管理者と連絡をとるのか、その他メーリングリストに関する様々な情報につ

いては https://www.debian.org/MailingLists/を参照してください。

4.1.1 利用の基本ルール

メーリングリストのメッセージに返信する際には、大本の投稿者が特別に要求しない限り、同報メール (CC)
を送らないようにしてください。メーリングリストに投稿する人は必ず返信を見ているはずです。

クロスポスト (同じメッセージを複数のメーリングリストに投稿する)のはお止め下さい。いつものネット
上と同じ様に、返信文では引用を削って下さい。概して投稿するメッセージについては、通常の慣習をしっ

かりと守ってください。

詳細については行動規範を参照してください。Debianコミュニティガイドラインも読むと良いでしょう。

4.1.2 開発の中心となっているメーリングリスト

開発者が利用すべき Debianの中核メーリングリスト:

• debian-devel-announce@lists.debian.org は開発者に重要な事を伝える際に使われます。全開

発者がこのメーリングリストを購読する事が望まれます。

• debian-devel@lists.debian.orgは様々な技術関連の事柄を話し合うのに使われます。

• debian-policy@lists.debian.orgは Debianポリシーについて話し合い、それに対して投票を行
うのに使われます。

• debian-project@lists.debian.orgはプロジェクトに関する様々な非技術関連の事柄を話し合う

のに使われます。

他にも様々な事柄に特化したメーリングリストが利用できます。一覧については https://lists.debian.org/を
参照してください。

https://www.debian.org/MailingLists/
https://www.debian.org/MailingLists/#codeofconduct
https://people.debian.org/~enrico/dcg/
https://lists.debian.org/

Debian Developer’s Reference,リリース 14.3

4.1.3 特別なメーリングリスト

debian-private@lists.debian.orgはDebian開発者間でのプライベートな話し合い用に使う特別なメー
リングリストです。つまり、理由がなんであれここに投稿された文章は公開するべきではないものである

ことを意味しています。このため、これは流量が少ないメーリングリストで、ユーザは本当に必要でない

限りは debian-private@lists.debian.org を使わないように勧められています。さらに、このメーリ

ングリストから誰かへメールを転送してはいけません。様々な理由からこのメーリングリストのアーカイ

ブはウェブから見ることはできませんが、master.debian.org上のシェルアカウントを使って ~debian/

archive/debian-private/ディレクトリを参照することで確認できます。

debian-email@lists.debian.orgは、特別なメーリングリストです。ライセンス、バグ、その他につい

て upstreamの作者にコンタクトを取る、他の人とプロジェクトについて議論した内容をアーカイブしてお
くのに役立つ Debianに関するメールをまとめた「福袋」として使われています。

4.1.4 新規に開発関連のメーリングリストの開設を要求する

Before requesting a mailing list that relates to the development of a package (or a small group of related pack-
ages), please consider if using an alias (via a .forward-aliasname file on master.debian.org, which translates into a
reasonably nice you-aliasname@debian.org address) is more appropriate.

lists.debian.org上での通常のメーリングリストが本当に必要であると決意した場合は、HOWTOに従って
進めてリクエストを埋めてください。

4.2 IRCチャンネル
いくつもの IRCチャンネルが Debianの開発のために用意されています。チャンネルは主に Open and free
technology community (OFTC)のネットワーク上にホストされています。irc.debian.orgの DNSエント
リは irc.oftc.netへのエイリアスです。

Debian用のメインのチャンネルは一般的にいって #debianになります。これは巨大な、多目的のチャン

ネルで、ユーザがトピックやボットによって提供される最近のニュースを見つけることができる場所で

す。#debianは英語を話す人たち用のもので、他の言語を話す人達のために同様なものには #debian.de、

#debian-fr、#debian-brなど他にも似通った名前のチャンネルがあります。

Debian開発での中心のチャンネルは #debian-develです。これはとてもアクティブなチャンネルで、大

抵 150人以上が常にログインしています。このチャンネルは Debianで作業する人達のためのチャンネルで
あって、サポート用のチャンネルではありません (そのためには #debianがあります)。このチャンネルは、
こっそり覗いてみたい (そして学びたい)人に対してもオープンでもあります。このチャンネルのトピック
は、開発者にとって興味深い情報に溢れています。

#debian-develは公開チャンネルなので、debian-private@lists.debian.orgで話されている話題につ

いて触れるべきではありません。この目的の為には、#debian-privateという鍵で守られた他のチャンネ

ルがあります。この鍵は master.debian.org:~debian/archive/debian-private/で取得可能です。

There are other additional channels dedicated to specific subjects. #debian-bugs is used for coordinating bug
squashing parties. #debian-boot is used to coordinate the work on the debian-installer. #debian-doc is occa-
sionally used to talk about documentation, like the document you are reading. Other channels are dedicated to an
architecture or a set of packages: #debian-kde, #debian-dpkg, #debian-perl, #debian-python...

16 第 4章 Resources for Debian Members

https://www.debian.org/MailingLists/HOWTO_start_list
https://www.oftc.net/
https://www.oftc.net/

Debian Developer’s Reference,リリース 14.3

同様に非英語圏の開発者のチャンネルも存在しています。例えば #debian-devel-frは Debianの開発に
興味があるフランス語を使う人々のためのチャンネルです。

Channels dedicated to Debian also exist on other IRC networks.

4.3 ドキュメント化
This document contains a lot of information which is useful to Debian developers, but it cannot contain everything.
Most of the other interesting documents are linked from The Developers' Corner. Take the time to browse all the
links; you will learn many more things.

4.4 Debianのマシン群
Debianではサーバとして動いている複数のコンピュータがあり、この多くは Debianプロジェクトにおい
て重要な役割を果たしています。マシンの大半は移植作業に利用されており、全てインターネットに常時

接続されています。

マシンのうち幾つかは、Debianマシン利用ポリシーで定められたルールに従う限り、個々の開発者の利用
が可能となっています。

とにかく、これらのマシンをあなたが Debian関連の目的に合うと思ったことに利用できます。システム
管理者には丁寧に接し、システム管理者からの許可を最初に得ることなく、非常に大量のディスク容量／

ネットワーク帯域／ CPUを消費しないようにしてください。大抵これらのマシンはボランティアによって
運用されています。

Debian で利用しているパスワードと Debian のマシンにインストールしてある SSH 鍵を保護することに
注意してください。ログインやアップロードの際にパスワードをインターネット越しに平文で送るような

Telnetや FTPや POPなどの利用方法は避けてください。

あなたが管理者でも無い限り、Debianサーバ上には Debianに関連しないものを一切置かないようにして
ください。

Debianのマシン一覧は https://db.debian.org/machines.cgiで確認可能です。このウェブページはマシン名、
管理者の連絡先、誰がログイン可能か、SSH鍵などの情報を含んでいます。

Debian サーバでの作業について問題があり、システム管理者らに知らせる必要があると考えた場合は、
https://rt.debian.org/にあるリクエストトラッカーのDSA (Debian System Administration)チームのキュー一覧
でオープンになっている問題の一覧を確認できます (ユーザー名: "debian"と master.debian.org:~debian/

misc/rt-passwordにあるパスワードでログインできます)。新たな問題を報告するには、単に admin@rt.

debian.org にメールを送ってください。"Debian RT" をサブジェクトのどこかに入れるのを忘れずに。
DSAチームに連絡を取るには、プライベートな情報あるいはその他の秘密にしておくべき情報を含む場合
には dsa@debian.orgを、それ以外の場合は debian-admin@lists.debian.orgへメールしてください。

DSAチームは OFTCの IRCチャンネル #debian-adminにも居ます。

システム管理に関連しない、特定のサービスについて問題がある場合 (アーカイブからパッケージを削除す
る、ウェブサイトの改善提案など)は、大抵の場合「擬似パッケージ」に対してバグを報告することになり
ます。どうやってバグ報告をするかについてはバグ報告を参照してください。

中心となっているサーバのうち幾つかは利用が制限されていますが、そこにある情報は他のサーバへミラー

されています。

4.3. ドキュメント化 17

https://www.debian.org/devel/
https://www.debian.org/devel/dmup
https://db.debian.org/machines.cgi
https://rt.debian.org/

Debian Developer’s Reference,リリース 14.3

4.4.1 バグ報告サーバ

bugs.debian.orgがバグ報告システム (BTS)の中心となっています。

Debianのバグについて定量的な分析や処理をするような計画がある場合、ここで行ってください。ですが、不
要な作業の重複や処理時間の浪費を減らすため、何であれ実装する前に debian-devel@lists.debian.org

であなたの計画を説明してください。

4.4.2 ftp-masterサーバ

The ftp-master.debian.org server holds the canonical copy of the Debian archive. Generally, packages up-
loaded to ftp.upload.debian.org end up on this server; seeパッケージをアップロードする.

このサーバの利用は制限されています。ミラーが mirror.ftp-master.debian.org上で利用可能です。

Debian FTPアーカイブについて問題がある場合、通常 ftp.debian.org擬似パッケージに対するバグ報告

を行うか、ftpmaster@debian.orgへメールをする必要がありますが、パッケージの移動、削除、リネー

ム、放棄、引き取り、再導入にある手順も参照してください。

4.4.3 www-masterサーバ

メインの web サーバが www-master.debian.org です。公式 web ページを持ち、新たな参加者に対する
Debianの顔となっています。

If you find a problem with the Debian web server, you should generally submit a bug against the pseudo-package
www.debian.org. Remember to check whether or not someone else has already reported the problem to the Bug
Tracking System.

4.4.4 peopleウェブサーバ

people.debian.orgは、開発者個人の何か Debianに関連するウェブページのために使われているサーバ
です。

ウェブに置きたい何か Debian 特有の情報を持っている場合、people.debian.org 上のホームディレク

トリの public_html以下にデータを置くことでこれが可能となっています。これには https://people.

debian.org/~your-user-id/という URLでアクセス可能です。

他のホストではバックアップされないのに対して、ここではバックアップされるので、これを使うのは特

定の位置づけのものだけにするべきです。

大抵の場合、他のホストを使う唯一の理由はアメリカの輸出制限に抵触する素材を公開する必要がある時

です。その様な場合はアメリカ国外に位置する他のサーバのどれかを使えます。

何か質問がある場合は、debian-devel@lists.debian.orgにメールして下さい。

4.4.5 salsa.debian.org: Git repositories and collaborative development platform

If you want to use a git repository for any of your Debian work, you can use Debian's GitLab instance called Salsa
for that purpose. Gitlab provides also the possibility to have merge requests, wiki pages, bug trackers among many
other services as well as a fine-grained tuning of access permission, to help working on projects collaboratively.

18 第 4章 Resources for Debian Members

https://bugs.debian.org/www.debian.org
https://bugs.debian.org/www.debian.org
https://salsa.debian.org

Debian Developer’s Reference,リリース 14.3

For more information, please see the documentation at https://wiki.debian.org/Salsa/Doc.

Any Debian package hosted on Salsa has also access to the Salsa CI . The Salsa CI pipeline mimics the tests that are
run after each upload to Debian, but instead of having to wait for results or risk the health of the Debian repositories,
Salsa CI provides you with instant feedback about any problems the changes you made may have created or solved.

4.4.6 GitHub.com: Submitting pull requests to upstream repositories

If some upstream repository is hosted on GitHub.com, you can use the Debian organization to create repository
forks and submit changed branches with pull requests to upstream maintainers.

The organization is open to all Debian Members. To request membership, open an issue in the Debian/.github meta
repository.

4.4.7 複数のディストリビューション利用のために chrootを使う

幾つかのマシン上では、異なったディストリビューション用の chrootが利用可能です。以下の様にして使
うことが出来ます：

vore$ dchroot unstable

Executing shell in chroot: /org/vore.debian.org/chroots/user/unstable

全ての chroot環境内で、一般ユーザの homeディレクトリが利用可能になっています。どの chrootが利用
可能かについては https://db.debian.org/machines.cgiにて確認ができます。

4.5 開発者データベース
The Developers Database, at https://db.debian.org/, is an LDAP directory for managing Debian developer at-
tributes. You can use this resource to search the list of Debian developers. Part of this information is also available
through the finger service on Debian servers; try finger yourlogin@db.debian.org to see what it reports.

開発者らは、以下に挙げるような自身に関する様々な情報を変更するためにデータベースにログインがで

きます。

• forwarding address for your debian.org email as well as spam handling. See https://db.debian.org/forward.
html for a description of all the options.

• debian-privateの購読

• 休暇中かどうか

• 住所、国名、Debian開発者世界地図で使われている住んでいる地域の緯度経度、電話・ファックス
番号、IRCでのニックネーム、そしてウェブページのアドレスなどの個人情報

• Debianプロジェクトのマシン上でのパスワードと優先的に指定するシェル

当然ですが、ほとんどの情報は外部からはアクセス可能にはなっていません。より詳細な情報については、

https://db.debian.org/doc-general.htmlで参照できるオンラインドキュメントを読んでください。

開発者は公式 Debianマシンへの認証に使われる SSH鍵を登録することもできますし、新たな *.debian.net
の DNSエントリの追加すら可能です。これらの機能は https://db.debian.org/doc-mail.htmlに記述されてい
ます。

4.5. 開発者データベース 19

https://wiki.debian.org/Salsa/Doc
https://salsa.debian.org/salsa-ci-team/pipeline
https://github.com
https://github.com/Debian
https://github.com/Debian/.github/issues/new?assignees=&labels=join&template=join.yml&title=please+add+me+to+this+organization
https://github.com/Debian/.github/issues/new?assignees=&labels=join&template=join.yml&title=please+add+me+to+this+organization
https://db.debian.org/machines.cgi
https://db.debian.org/
https://db.debian.org/login.html
https://db.debian.org/forward.html
https://db.debian.org/forward.html
https://www.debian.org/devel/developers.loc
https://db.debian.org/doc-general.html
https://db.debian.org/doc-mail.html

Debian Developer’s Reference,リリース 14.3

4.6 Debianアーカイブ
Debianディストリビューションは大量のパッケージ (現在約 30000個)と幾つかの追加ファイル (ドキュメ
ントやインストール用ディスクイメージなど)から成り立っています。

以下が完全な Debianアーカイブのディレクトリツリーの例です：

dists/stable/main/

dists/stable/main/binary-amd64/

dists/stable/main/binary-armel/

dists/stable/main/binary-i386/

...

dists/stable/main/source/

...

dists/stable/main/disks-amd64/

dists/stable/main/disks-armel/

dists/stable/main/disks-i386/

...

dists/stable/contrib/

dists/stable/contrib/binary-amd64/

dists/stable/contrib/binary-armel/

dists/stable/contrib/binary-i386/

...

dists/stable/contrib/source/

dists/stable/non-free/

dists/stable/non-free/binary-amd64/

dists/stable/non-free/binary-armel/

dists/stable/non-free/binary-i386/

...

dists/stable/non-free/source/

dists/stable/non-free-firmware/

dists/stable/non-free-firmware/binary-amd64/

dists/stable/non-free-firmware/binary-armel/

dists/stable/non-free-firmware/binary-i386/

...

dists/stable/non-free-firmware/source/

dists/testing/

dists/testing/main/

...

dists/testing/contrib/

...

dists/testing/non-free/

...

(次のページに続く)

20 第 4章 Resources for Debian Members

Debian Developer’s Reference,リリース 14.3

(前のページからの続き)

dists/testing/non-free-firmware/

...

dists/unstable

dists/unstable/main/

...

dists/unstable/contrib/

...

dists/unstable/non-free/

...

dists/unstable/non-free-firmware/

...

pool/

pool/main/a/

pool/main/a/apt/

...

pool/main/b/

pool/main/b/bash/

...

pool/main/liba/

pool/main/liba/libalias-perl/

...

pool/main/m/

pool/main/m/mailx/

...

pool/non-free/d/

pool/non-free/d/doc-rfc/

...

pool/non-free-firmware/f/

pool/non-free-firmware/f/firmware-nonfree/

...

見て分かるように、一番上のディレクトリは dists/と pool/という 2つのディレクトリを含んでいます。
後者の“pool”はパッケージが実際に置かれており、アーカイブのメンテナンスデータベースと関連するプ
ログラムによって利用されます。前者には stable、testing、そして unstableというディストリビュー

ションが含まれます。ディストリビューションサブディレクトリ中の Packagesおよび Sourcesファイル

は pool/ディレクトリ中のファイルを参照しています。以下の各ディストリビューションのディレクトリ

ツリーは全く同じ形式になっています。以下で stableについて述べていることは unstableや testing

ディストリビューションにも同様に当てはまります。

dists/stableは、main、contrib、non-free、non-free-firmwareという名前の 4つのディレクトリを
含んでいます。

それぞれ、sourceパッケージ (source)のディレクトリとサポートしている各アーキテクチャ (binary-i386、
binary-amd64など)のディレクトリがあります。

4.6. Debianアーカイブ 21

Debian Developer’s Reference,リリース 14.3

mainは特定のアーキテクチャ (disks-i386、disks-amd64など)上で Debianディストリビューションをイ
ンストールする際に必要となるディスクイメージと主要なドキュメントの基本部分が入っている追加ディ

レクトリを含んでいます。

4.6.1 セクション

Debianアーカイブの mainセクションは公式なDebianディストリビューションを構成するものです。main

セクションが公式なのは、我々のガイドライン全てに合致するものであるからです。他の 2つのセクショ
ンはそうではなく、合致は異なる程度となっています…つまり、Debianの公式な一部ではありません。

mainセクションにある全てのパッケージは、Debianフリーソフトウェアガイドライン (DFSG)及び Debian
ポリシーマニュアルに記載されている他のポリシーの要求事項に完全に適合していなければなりません。

DFSGは我々の定義する「フリーソフトウェア」です。詳細は Debianポリシーマニュアルを確認してくだ
さい。

contribセクションにあるパッケージは DFSGに適合している必要がありますが、他の要求事項を満たせ
てはいないことでしょう。例えば、non-freeパッケージに依存している、などです。

DFSGを満たさないパッケージは non-freeか non-free-firmwareセクションに配置されます。これら

のパッケージは Debianディストリビューションの一部としては考えられてはいませんが、我々はこれらを
利用できるようにしており、non-freeソフトウェアのパッケージについて (バグ追跡システムやメーリング
リストなどの)インフラストラクチャを提供しています。

Debianポリシーマニュアルは 4つのセクションについてより正確な定義を含んでいます。上記の説明はほ
んの触りに過ぎません。

アーカイブの最上位階層で 4つのセクションに別れていることは、インターネット上の FTPサーバ経由で
あれ、CD-ROMであれ、Debianを配布したいと考える人にとって大事なことです…その様な人は mainセ

クションと contribセクションのみを配布することで、法的なリスクを回避できます。例えば、non-free

セクションにあるパッケージのいくつかは商的な配布を許可していません。

その一方で、CD-ROMベンダは non-free内のパッケージ群の個々のパッケージライセンスを簡単に確認

でき、問題が無ければその多くを CD-ROMに含めることが出来ます。(これはベンダによって大いに異な
るので、この作業は Debian開発者にはできません)。

Note that the term section is also used to refer to categories which simplify the organization and browsing of
available packages: admin, net, utils, etc. Once upon a time, these sections (subsections, rather) existed in
the form of subdirectories within the Debian archive. Nowadays, these exist only in the Section header fields of
packages.

4.6.2 アーキテクチャ

はじめのうちは、Linuxカーネルは Intel i386 (またはそれより新しい)プラットフォーム用のみが利用可能
で、Debianも同様でした。しかし、Linuxは日に日に広まり、カーネルも他のアーキテクチャへと移植さ
れ、そして Debianはそれらのサポートを始めました。そして、沢山のハードウェアをサポートするだけで
は飽き足らず、Debianは hurdや kfreebsdのような他の Unixカーネルをベースにした移植版を作成する
ことを決めました。

Debian GNU/Linux 1.3 was only available as i386. Debian 2.0 shipped for i386 and m68k architectures. Debian
2.1 shipped for the i386, m68k, alpha, and sparc architectures. Since then Debian has grown hugely. Debian

22 第 4章 Resources for Debian Members

https://www.debian.org/social_contract#guidelines
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

Debian Developer’s Reference,リリース 14.3

9 supports a total of ten Linux architectures (amd64, arm64, armel, armhf, i386, mips, mips64el, mipsel,
ppc64el, and s390x) and two kFreeBSD architectures (kfreebsd-i386 and kfreebsd-amd64).

特定の移植版についての開発者／ユーザへの情報は Debian移植版のウェブページで入手可能です。

4.6.3 パッケージ

Debianパッケージには２種類あります。ソースパッケージとバイナリパッケージです。

フォーマットに応じて、ソースパッケージは必須の .dscファイルに加え、一つあるいはそれ以上のファ

イルから成り立ちます:

• フォーマット”1.0”では、.tar.gzファイルか、.orig.tar.gzファイルと .diff.gzファイルの

二つを持っています。

• フォーマット“3.0 (quilt)”では、必須となる開発元の tarballである .orig.tar.{gz,bz2,xz}、そ

れからオプションで、開発元の追加 tarballである .orig-component.tar.{gz,bz2,xz}をいくつか、
そして必須の debian tarball、debian.tar.{gz,bz2,xz}です。

• フォーマット“3.0 (native)”では、単一の .tar.{gz,bz2,xz} tarballのみを持っています。

If a package is developed specially for Debian and is not distributed outside of Debian, there is just one .tar.{gz,
bz2,xz} file, which contains the sources of the program; it's called a“native” source package. If a package is
distributed elsewhere too, the .orig.tar.{gz,bz2,xz} file stores the so-called upstream source code, that
is the source code that's distributed by the upstream maintainer (often the author of the software). In this case,
the .diff.gz or the debian.tar.{gz,bz2,xz} contains the changes made by the Debian maintainer.

.dsc ファイルはソースパッケージ中のすべてのファイルをチェックサム (md5sums, sha1sums および
sha256sums) と共にリストしたものと、パッケージ関連の追加情報 (メンテナ、バージョン、etc) を含
んでいます。

4.6.4 ディストリビューション

The directory system described in the previous chapter is itself contained within distribution directories.
Each distribution is actually contained in the pool directory in the top level of the Debian archive itself.

簡単にまとめると、Debianアーカイブは FTPサーバのルートディレクトリを持っています。例えば、ミ
ラーサイトでいうと ftp.us.debian.orgでは Debianアーカイブそのものは /debianに含まれており、こ
れは共通した配置となっています (他には /pub/debianがあります)。

ディストリビューションは Debianソースパッケージとバイナリパッケージと、これに対応した Sources

と Packagesのインデックスファイル (これら全てのパッケージのヘッダ情報を含む)から構成されていま
す。前者は pool/ディレクトリに、そして後者はアーカイブの dists/ディレクトリに含まれています (後
方互換性のため)。

4.6.4.1 安定版 (stable)、テスト版 (testing)、不安定版 (unstable)

常に 安定版 (stable) (dists/stable に属します)、テスト版 (testing) (dists/testing に属します)、
不安定版 (unstable) (dists/unstable に属します) と呼ばれるディストリビューションが存在していま
す。これは Debianプロジェクトでの開発プロセスを反映しています。

4.6. Debianアーカイブ 23

https://www.debian.org/ports/
http://ftp.us.debian.org/debian

Debian Developer’s Reference,リリース 14.3

活発な開発が不安定版 (unstable)ディストリビューションで行われています (これが、何故このディストリ
ビューションが ``開発ディストリビューション ``と呼ばれることがあるかという理由です)。全ての Debian
開発者は、このディストリビューション内の自分のパッケージを何時でも更新できます。つまり、このディ

ストリビューションの内容は日々変化しているのです。このディストリビューションの全てが正しく動作

するかを保証することについては特別な努力は払われていないので、時には文字通り不安定 (unstable)とな
ります。

テスト版ディストリビューション ディストリビューションは、パッケージが特定の判定規準を満たした

際に不安定版から自動的に移動されることで生成されています。この判定規準はテスト版に含まれるパッ

ケージとして十分な品質であることを保証する必要があります。テスト版への更新は、新しいパッケージ

がインストールされた後、毎日 2回実施されています。テスト版ディストリビューションを参照してくだ
さい。

一定の開発期間後、リリースマネージャが適当であると決定すると、テスト版 (testing)ディストリビュー
ションはフリーズされます。これは、不安定版 (unstable)からテスト版 (testing)へのパッケージ移動

をどのように行うかのポリシーがきつくなることを意味しています。バグが多すぎるパッケージは削除さ

れます。バグ修正以外の変更がテスト版 (testing)に入ることは許可されません。いくらかの時間経過

後、進行状況に応じてテスト版 (testing)ディストリビューションはより一層フリーズされます。テスト

版ディストリビューションの取扱い詳細については debian-devel-announceにてリリースチームが発表しま
す。リリースチームが満足する程度に残っていた問題が修正された後、ディストリビューションがリリー

スされます。リリースは、テスト版 (testing) が安定版 (stable) へとリネームされる事を意味してお
り、テスト版 (testing)用の新しいコピーが作成され、以前の安定版 (stable)は旧安定版 (oldstable)

にリネームされ、最終的にアーカイブされるまで存在しています。アーカイブ作業では、コンテンツは

archive.debian.orgへと移動されます。

この開発サイクルは、不安定版 (unstable)ディストリビューションが、一定期間テスト版 (testing)を

過ごした後で安定版 (stable)になる仮定に基づいています。一旦ディストリビューションが安定したと

考えられたとしても、必然的にいくつかのバグは残っています̶これが安定版ディストリビューション

が時折更新されている理由です。しかし、これらの更新はとても注意深くテストされており、新たなバグ

を招き入れるリスクを避けるためにそれぞれ個々にアーカイブに収録されるようになっています。安定版

(stable) への追加提案は、proposed-updates ディレクトリにて参照可能です。proposed-updates に

ある合格したこれらのパッケージは、定期的にまとめて安定版ディストリビューションに移動され、安定

版ディストリビューションのリビジョンレベルが 1つ増えることになります (例: ‘6.0’が‘6.0.1’に、
‘5.0’が‘5.0.8’に、以下同様)。詳細に付いては、特別な例: 安定版 (stable)と旧安定版 (oldstable)ディ
ストリビューションへアップロードするを参照してください。

Note that development in unstable during the freeze should not be continued as usual, as packages are still build
in unstable, before they migrate to testing, thus unstable should only contain packages meant for testing.
Thus only upload to unstable during freezes, if you are planning to request an unblock (or if the package is not
in testing).

If you want to develop new stuff for after the freeze, upload to experimental instead.

4.6.4.2 テスト版ディストリビューションについてのさらなる情報

パッケージは通常、不安定版 (unstable)におけるテスト版への移行基準を満たした後でテスト版 (testing)
ディストリビューションへとインストールされます。

より詳細については、テスト版ディストリビューションを参照してください。

24 第 4章 Resources for Debian Members

Debian Developer’s Reference,リリース 14.3

4.6.4.3 試験版 (experimental)

試験版 (experimental)は特殊なディストリビューションです。これは、'安定版'や '不安定版'と同じ意
味での完全なディストリビューションではありません。その代わり、ソフトウェアがシステムを破壊する

可能性がある、あるいは不安定版ディストリビューションに導入することですら不安定過ぎる (だが、そ
れにもかかわらず、パッケージにする理由はある)ものであるような、とても実験的な要素を含むソフト
ウェアの一時的な置き場であることを意味しています。試験版 (experimental)からパッケージをダウン

ロードしてインストールするユーザは、十分に注意を受けているのを期待されています。要するに、試験

版 (experimental)ディストリビューションを利用すると、どのようになるかは全くわからないというこ

とです。

以下が、試験版 (experimental)用の sources.list 5です:

deb http://deb.debian.org/debian/ experimental main

deb-src http://deb.debian.org/debian/ experimental main

ソフトウェアがシステムに多大なダメージを与える可能性がある場合、試験版 (experimental)へ配置す

る方が良いでしょう。例えば、実験的な圧縮ファイルシステムは恐らく試験版 (experimental)に行くこ

とになるでしょう。

パッケージの新しい上流バージョンが新しい機能を導入するが多くの古い機能を壊してしまう場合であれ

ば、アップロードしないでおくか試験版 (experimental)へアップロードするかしましょう。新しいバー

ジョン、ベータ版などで、利用する設定が完全に変わっているソフトウェアは、メンテナの配慮に従って試

験版 (experimental)へ入れることができます。もしも非互換性や複雑なアップグレード対応について作

業している場合などは、試験版 (experimental)をステージングエリアとして利用することができるので

す。その結果、テストユーザは早期に新しいバージョンの利用が可能になります。

試験版 (experimental) のソフトウェアは不安定版 (unstable) へ説明文に幾つかの警告を加えた上で入れ
ることも可能ではありますが、お勧めはできません。それは、不安定版 (unstable) のパッケージは

テスト版 (testing) へ移行し、そして安定版 (stable) になることが期待されているからです。試験版
(experimental)を使うのをためらうべきではありません。何故なら ftpmasterには何の苦痛も与えません
し、試験版 (experimental)のパッケージは一旦不安定版 (unstable)により大きなバージョン番号でアップ
ロードされると定期的に削除されるからです。

システムにダメージを与えないような新しいソフトウェアは直接不安定版 (unstable)へ入れることが可
能です。

試験版 (experimental)の代わりとなる方法は、people.debian.org上の個人的な webページを使うこ
とです。

4.6.5 リリースのコードネーム

Every released Debian distribution has a code name: Debian 11 is called bullseye; Debian 12, bookworm;
Debian 13, trixie; the next release, Debian 14, will be called forky and Debian 15 will be called duke. There
is also a pseudo-distribution, called sid, which is the current unstable distribution; since packages are moved
from unstable to testing as they approach stability, sid itself is never released. As well as the usual contents
of a Debian distribution, sid contains packages for architectures which are not yet officially supported or released
by Debian. These architectures are planned to be integrated into the mainstream distribution at some future date.
The codenames and versions for older releases are listed on the website.

4.6. Debianアーカイブ 25

https://www.debian.org/releases/

Debian Developer’s Reference,リリース 14.3

Debianはオープンな開発体制 (つまり、誰もが開発について参加／追いかけが可能)となっており、不安定
版 (unstable)およびテスト版 (testing)ディストリビューションすら Debianの FTPおよび HTTPサー
バネットワークを通じてインターネットへ提供されています。従って、リリース候補版を含むディレクトリ

をテスト版 (testing)と呼んだ場合、このバージョンがリリースされる際に安定版 (stable)へとリネー
ムする必要があるということを意味しており、すべての FTPミラーがディストリビューションすべて (と
ても巨大です)を再回収することになります。

一方、最初からディストリビューションディレクトリを Debian-x.yと呼んでいた場合、皆 Debianリリー
ス x.yが利用可能になっていると考えるでしょう。(これは過去にあったことで、CD-ROMベンダがDebian
1.0 の CD-ROM を pre-1.0 開発版を元に作成したことによります。これが。何故最初の公式 Debian のリ
リース版が 1.0ではなく 1.1であったかという理由です)。

従って、アーカイブ内のディストリビューションディレクトリの名前はリリースの状態ではなくコードネー

ムで決定されます (例えば 'trixie'など)。これらの名称は開発期間中とリリース後も同じものであり続け
ます。そして、簡単に変更可能なシンボリックリンクによって、現在の安定版リリースディストリビュー

ションを示すことになります。これが、stable、testing、unstableへのシンボリックリンクがそれぞれ

相応しいリリースディレクトリを指しているのに対して、実際のディストリビューションディレクトリで

はコードネームを使っている理由です。

4.7 Debianミラーサーバ
各種ダウンロードアーカイブサイトおよびウェブサイトは、中央サーバを巨大なトラフィックから守るた

めに複数ミラーが利用可能となっています。実際のところ、中央サーバのいくつかは公開アクセスが出来

るようにはなっていません -代わりに一次ミラーが負荷を捌いています。このようにして、ユーザは常に
ミラーにアクセスして利用可能になっており、Debianを多くのサーバやネットワーク越しに配布するのに
必要な帯域が楽になり、ユーザが一次配布元に集中しすぎてサイトがダウンしてしまうのをおおよそ避け

られるようになります。一次配布ミラーは内部サイトからのトリガーによって更新されるので、可能な限

り最新になっている (我々はこれをプッシュミラーと呼んでいます)。

利用可能な公開 FTP/HTTP サーバのリストを含む、Debian ミラーサーバについての全ての情報が https:
//www.debian.org/mirror/から入手可能です。この役立つページには、内部的なものであれ公開されるもの
であれ、自分のミラーを設定することに興味を持った場合に役立つ情報とツールも含まれています。

Note that mirrors are generally run by third parties who are interested in helping Debian. As such, developers
generally do not have accounts on these machines.

4.8 Incomingシステム
Incomingシステムは、更新されたパッケージを集めて Debianアーカイブにインストールする役割を果た
しています。これは ftp-master.debian.org上にインストールされたディレクトリとスクリプトの集合

体です。

全てのメンテナによってアップロードされたパッケージは UploadQueueというディレクトリに置かれま

す。このディレクトリは、毎分 queuedと呼ばれるデーモンによってスキャンされ、*.commandファイルが

実行されて、そのまま正しく署名された *.changesファイルが対応するファイルと共に uncheckedディ

レクトリに移動されます。このディレクトリは ftp-masterの様に制限されており、ほとんどの開発者には
見えるようにはなっていません。ディレクトリはアップロードされたパッケージと暗号署名の完全性を照

合する dak process-uploadスクリプトによって 15分毎にスキャンされます。パッケージがインストー

26 第 4章 Resources for Debian Members

https://www.debian.org/mirror/
https://www.debian.org/mirror/

Debian Developer’s Reference,リリース 14.3

ル可能であると判断されると、doneディレクトリに移動されます。これがパッケージの初アップロードの

場合 (あるいは新たなバイナリパッケージを含んでいる場合)、ftpmasterによる許可を待つ場所である new

ディレクトリに移動されます。パッケージが ftpmasterによって手動でインストールされるファイルを含む
場合は byhandディレクトリに移動します。それ以外の場合は、エラーが検出されるとパッケージは拒否

されて rejectディレクトリへと移動されます。

パッケージが受け入れられると、システムは確認のメールをメンテナに送り、アップロードの際に修正済

みとされたバグをクローズし、auto-builderがパッケージのリコンパイルを始めます。Debianアーカイブに
実際にインストールされるまで、パッケージはすぐに https://incoming.debian.org/にてアクセス可能になり
ます。この作業は 1日に 4回行われます (様々な経緯から 'dinstall run'とも呼ばれています)。そしてパッ
ケージは incomingから削除され、他のパッケージ全てと共に poolにインストールされます。他のすべて
の更新 (例えば Packagesインデックスファイルや Sourcesインデックスファイル)が作成されると、一次
ミラー全てを更新する特別なスクリプトが呼び出されます。

アーカイブメンテナンスのソフトウェアは、あなたがアップロードした OpenPGP/GnuPGで署名された .

changes ファイルも適切なメーリングリストへと送信します。パッケージの Distribution が stable

に設定されてリリースされた場合、案内は debian-changes@lists.debian.org に送られます。パッ

ケージの Distribution として unstable や experimental が設定されている場合、案内は代わりに

debian-devel-changes@lists.debian.orgや debian-experimental-changes@lists.debian.orgへ

と投稿されます。

ftp-masterは利用が制限されているサーバなので、インストールされたもののコピーは mirror.ftp-master.

debian.org上で全ての開発者が利用できるようになっています。

4.9 パッケージ情報

4.9.1 ウェブ上から

パッケージはそれぞれ複数の目的別のウェブページを持っています。https://packages.debian.org/

package-nameは各ディストリビューション中でそれぞれ利用可能なパッケージバージョンを表示します。
バージョン毎のリンク先のページはパッケージの説明、依存関係、ダウンロードへのリンクを含んだ情報

を提供しています。

バグ追跡システムは個々のパッケージのバグを記録していきます。https://bugs.debian.org/package-
nameというような URLで与えたパッケージ名のバグを閲覧できます。

4.9.2 dak lsユーティリティ

dak lsは dakツールスイートの一部で、全ディストリビューションおよびアーキテクチャの中から利用可
能なパッケージバージョンをリストアップします。dakツールは ftp-master.debian.org上と、mirror.

ftp-master.debian.org上のミラーにて利用できます。パッケージ名に対して一つの引数を使います。実

際に例を挙げた方が分かりやすいでしょう:

$ dak ls evince

evince | 3.22.1-3+deb11u2 | oldstable | source, amd64, arm64, armel,␣

↪→armhf, i386, mips, mips64el, mipsel, ppc64el, s390x

evince | 3.22.1-3+deb11u2 | oldstable-debug | source

evince | 3.30.2-3+deb12u1 | stable | source, amd64, arm64, armel,␣

(次のページに続く)

4.9. パッケージ情報 27

https://incoming.debian.org/

Debian Developer’s Reference,リリース 14.3

(前のページからの続き)

↪→armhf, i386, mips, mips64el, mipsel, ppc64el, s390x

evince | 3.30.2-3+deb12u1 | stable-debug | source

evince | 3.38.2-1 | testing | source, amd64, arm64, armel,␣

↪→armhf, i386, mips64el, mipsel, ppc64el, s390x

evince | 3.38.2-1 | unstable | source, amd64, arm64, armel,␣

↪→armhf, i386, mips64el, mipsel, ppc64el, s390x

evince | 3.38.2-1 | unstable-debug | source

evince | 40.4-1 | buildd-experimental | source, amd64, arm64, armel,␣

↪→armhf, i386, mips64el, mipsel, ppc64el, s390x

evince | 40.4-1 | experimental | source, amd64, arm64, armel,␣

↪→armhf, i386, mips64el, mipsel, ppc64el, s390x

evince | 40.4-1 | experimental-debug | source

この例では、不安定版 (unstable)でのバージョンはテスト版 (testing)のバージョンと違っており、テ

スト版のパッケージは全アーキテクチャについて、binary-only NMUされたパッケージになっています。そ
れぞれのバージョンのパッケージは、全アーキテクチャ上で再コンパイルされています。

4.10 Debianパッケージトラッカー
パッケージトラッカーは、ソースパッケージの動きを追いかけるメールおよびウェブベースのツールです。

Debianパッケージトラッカーでパッケージに対して購読 (subscribe)を行うだけで、パッケージメンテナが
受け取るメールとまったく同じものを受け取れます。

PTSは各ソースパッケージについての大量の情報をまとめたウェブインターフェイスを https://tracker.debian.
org/に持っています。その機能はたくさんの有用なリンク (BTS、QAの状態、連絡先情報、DDTSの翻訳
状態、builddのログ)や様々な所からの情報 (最近の changelogエントリ 30個、testingの状態など…)を集
めたものです。特定のソースパッケージについて知りたい場合に非常に有用なツールです。さらに、一旦

認証すれば、どのパッケージについてもクリックひとつで購読とキャンセルができます。

特定のソースパッケージに関しては https://tracker.debian.org/pkg/sourcepackageのような URLで
直接ウェブページに飛べます。

For more in-depth information, you should have a look at its documentation. Among other things, it explains
you how to interact with it by email, how to filter the mails that it forwards, how to configure your VCS commit
notifications, how to leverage its features for maintainer teams, etc.

4.11 Developer's packages overview
QA (quality assurance、品質保証)ウェブポータルが https://qa.debian.org/developer.phpから利用できます。
これは、一人の開発者のすべてのパッケージの一覧表を表示します (集団で行っている場合は、共同メンテ
ナとしてとして表示されます)。この表は開発者のパッケージについてうまく要約された情報を与えてくれ
ます: 重要度に応じたバグの数やそれぞれのディストリビューションで利用可能なバージョン番号、testing
の状態やその他有用な情報源へのリンクなどを含んでいます。

openな状態のバグやどのパッケージに対して責任を持っているのかを忘れないため、定期的に自身のデー
タを見直すのは良い考えです。

28 第 4章 Resources for Debian Members

https://tracker.debian.org/
https://tracker.debian.org/
https://qa.pages.debian.net/distro-tracker/
https://qa.debian.org/developer.php

Debian Developer’s Reference,リリース 14.3

4.12 Debianでの FusionForgeの導入例: Alioth
Until Alioth was deprecated and eventually turned off in June 2018, it was a Debian service based on a slightly mod-
ified version of the FusionForge software (which evolved from SourceForge and GForge). This software offered
developers access to easy-to-use tools such as bug trackers, patch managers, project/task managers, file hosting
services, mailing lists, VCS repositories, etc.

For many previously offered services replacements exist. This is important to know, as there are still many refer-
ences to alioth which still need fixing. If you encounter such references please take the time to try fixing them, for
example by filing bugs or when possible fixing the reference.

4.13 Goodies for Debian Members
Benefits available to Debian Members are documented on https://wiki.debian.org/MemberBenefits.

4.12. Debianでの FusionForgeの導入例: Alioth 29

https://wiki.debian.org/MemberBenefits

31

第5章 パッケージの取扱い方

この章では、パッケージの作成、アップロード、メンテナンス、移植についての情報を扱います。

5.1 新規パッケージ
もしあなたが Debianディストリビューションに対して新たなパッケージを作成したいという場合、まず
作業が望まれるパッケージ (Work-Needing and Prospective Packages (WNPP))の一覧をチェックする必要が
あります。WNPP一覧をチェックすることで、まだ誰もそのソフトをパッケージ化していないことや、作
業が重複していないことを確認します。詳細についてはWNPPのページを読んでください。

パッケージ化しようとしているソフトについて、誰もまだ作業していないようであれば、まずは wnpp擬似

パッケージ (pseudo-package)に対してバグ報告を投稿する必要があります (バグ報告)。このバグ報告には、
パッケージの説明 (他の人がレビューできます)、作業しようとしているパッケージのライセンス、ダウン
ロードが可能な現在の URLを含めた新規パッケージの作成予定 (自分自身が分かるだけではないもの)を
記述します。

サブジェクトを ITP:foo--short descriptionに設定する必要があります。ここでは fooは新規パッケージの
名前に置き換えます。バグ報告の重要度は wishlistに設定しなければなりません。X-Debbugs-CCヘッ
ダを使ってコピーを debian-devel@lists.debian.orgに送信してください (CC:は使わないでください。
CC:を使った場合はメールのサブジェクトにバグ番号が付与されないためです)。大量の新規パッケージの
作成 (11個以上)を行っている場合、メーリングリストへ個別に通知するのは鬱陶しいので、代わりにバグ
を登録した後で debian-develメーリングリストへ要約を送信してください。これによって、他の開発者ら
に次に来るパッケージを知らせ、説明とパッケージ名のレビューが可能になります。

新規パッケージがアーカイブへインストールされる際にバグ報告を自動的に閉じるため、Closes: #nnnnn
というエントリを新規パッケージの changelog内に含めてください (新規アップロードでバグがクローズさ
れる時を参照)。

パッケージについて、NEWパッケージキューの管理者への説明が必要だろうと思う場合は、changelogに説
明を含めて ftpmaster@debian.orgへ送ってください。アップロード後であればメンテナとして受け取っ

たメールに返信してください。もしくは既に再アップロード最中の場合は rejectメールに対して返信して
ください。

セキュリティバグを閉じる場合は、CVE 番号を Closes: #nnnnn と同じく含めるようにしてください。
これは、セキュリティチームが脆弱性を追跡するのに役立ちます。アドバイザリの IDが分かる前にバグ修
正のためのアップロードが行われた場合は、以前の changelogエントリを次のアップロード時に修正する
のが推奨されています。このような場合でも、元々の changelogでの記載に可能な限り背景情報へのポイ
ンタを全て含めてください。

我々がメンテナに意図しているところをアナウンスする様に求めるのには、いくつもの理由があります。

• (潜在的な新たな)メンテナが、メーリングリストの人々の経験を活かすのを手助けし、もし他の誰か
が既に作業を行っていた場合に知らせる。

https://www.debian.org/devel/wnpp/
https://www.debian.org/devel/wnpp/

Debian Developer’s Reference,リリース 14.3

• そのパッケージについての作業を検討している他の人へ、既に作業をしているボランティアがいるこ
とを知らせ、労力が共有される。

• debian-devel-changes@lists.debian.orgに流される一行の説明文 (description)と通常どおりの
「Intial release」という changelogエントリよりも、残った他のメンテナがパッケージに関してより深
く知ることができる。

• 不安定版 (unstable)で暮らす人 (そして最前線のテスターである人)の助けになる。我々はそのよう
な人々を推奨すべきである。

• メンテナや他に興味を持つ人々へ、プロジェクトで何が行われているのか、何か新しいことがあるか
ということ関して、告知は良い印象を与える。

新しいパッケージに対するよくある拒否理由については https://ftp-master.debian.org/REJECT-FAQ.htmlを
参照してください。

5.2 パッケージの変更を記録する
パッケージについて行った変更は debian/changelogに記録されなくてはいけません。これらの変更には、

何が変更されたのか、(不確かであれば)何故なのか、そしてどのバグが閉じられたのかの簡潔な説明文を
付加する必要があります。このファイルは /usr/share/doc/package/changelog.Debian.gz、あるいは
ネイティブパッケージの場合は /usr/share/doc/package/changelog.gzにインストールされます。

debian/changelogファイルは、幾つもの異なった項目からなる特定の構造に従っています。一点を取り

上げてみると、distributionについてはディストリビューションを選ぶに記述されています。このファ

イルの構造について、より詳細な情報は Debianポリシーの debian/changelogという章で確認できます。

changelogへの記載は、パッケージがアーカイブにインストールされる際、自動的に Debianバグを閉じる
のに利用できます。新規アップロードでバグがクローズされる時を参照してください。

ソフトウェアの新しい開発元のバージョン (new upstream version)を含むパッケージの changelogエントリ
は、以下のようにするのが慣習です:

* New upstream release.

There are tools to help you create entries and finalize the changelog for release̶ see devscripts (command dch),
git-buildpackage (command gbp dch) and dpkg-dev-el.

debian/changelogのベストプラクティスも参照してください。

5.3 パッケージをテストする
パッケージをアップロードする前に、基本的なテストをする必要があります。最低限、以下の作業が必要

です (同じ Debianパッケージの古いバージョンなどが必要になるでしょう):

• パッケージに対して lintian を実行する。以下のようにして lintian を実行できます: lintian

-vpackage-version.changesこれによって、バイナリパッケージ同様にソースパッケージを確認でき
ます。lintianが生成した出力を理解していない場合は、lintianが問題の説明を非常に冗長に出

力するようにする -iオプションを付けて実行してみてください。

32 第 5章パッケージの取扱い方

https://ftp-master.debian.org/REJECT-FAQ.html

Debian Developer’s Reference,リリース 14.3

通常、lintianがエラーを出力するようであれば、パッケージをアップロードしてはいけません (エ
ラーは Eで始まります)。

lintianについての詳細は、lintianを参照してください。

• もし古いバージョンがあれば、それからの変更点を分析するために追加で debdiffを実行する (debdiff
を参照)。

• Install the package and make sure the software works in an up-to-date unstable system.

• Upgrade the package from an older version to your new version.

• パッケージを削除して、再インストールする。

• Installing, upgrading and removal of packages can either be tested manually or by using the piuparts tool.

• ソースパッケージを違うディレクトリにコピーして展開し、再構築する。これは、パッケージが外部
の既存ファイルに依っているか、.diff.gzファイル内に含まれているファイルで保存されている権

限に依るかどうかをテストします。

5.4 ソースパッケージの概要
Debianのソースパッケージには 2種類あります：

• いわゆるネイティブ (native)パッケージ。元のソースと Debianで当てられたパッチの間に差が無
いもの

• オリジナルのソースコードの tarballファイルに、Debianによって作成された変更点を含む別のファ
イルが付随している (より一般的な)パッケージ

ネイティブパッケージの場合、ソースパッケージは Debianのソース controlファイル (.dsc)とソースコー
ドの tarball (.tar.{gz,bz2,xz})を含んでいます。ネイティブではないパッケージのソースパッケージは
Debianのソース controlファイルと、オリジナルのソースコードの tarball (.orig.tar.{gz,bz2,xz})、そして
Debianでの変更点 (ソース形式“1.0”は .diff.gz、ソース形式“3.0 (quilt)”は .debian.tar.{gz,bz2,xz})
を含んでいます。

ソース形式“1.0”では、パッケージが nativeかどうかはビルド時に dpkg-sourceによって決められてい

ました。最近では望むソース形式を debian/source/formatに“3.0 (quilt)”または“3.0 (native)”と記述
することによって明示することが推奨されています。この章の残りの部分は nativeではないパッケージに
ついてのみ記しています。

The first time a version is uploaded that corresponds to a particular upstream version, the original source tar file
must be uploaded and included in the .changes file. Subsequently, this very same tar file should be used to build
the new diffs and .dsc files, and will not need to be re-uploaded.

デフォルトでは、dpkg-genchangesおよび dpkg-buildpackageは前述されている changelogエントリと
現在のエントリが異なった upstreamバージョンを持つ場合にのみ、オリジナルのソース tarファイルを含
めようとします。この挙動は、-saを使って常に含めたり、-sdを使うことで常に含めないようにするよ

うに変更できます。

アップロード時にオリジナルのソースが含まれていない場合、アップロードされる .dscと diffファイル
を構築する際に dpkg-sourceが使用するオリジナルの tarファイルは、必ず既にアーカイブにあるものと
1バイトも違わぬものでなくてはなりません。

5.4. ソースパッケージの概要 33

Debian Developer’s Reference,リリース 14.3

Please notice that, in non-native packages, permissions on files that are not present in the *.orig.tar.{gz,bz2,
xz} will not be preserved, as diff does not store file permissions in the patch. However, when using source format
“3.0 (quilt)”, permissions of files inside the debian directory are preserved since they are stored in a tar archive.

5.5 ディストリビューションを選ぶ
アップロードでは、パッケージがどのディストリビューション向けになっているかを指定してあることが

必要です。パッケージの構築プロセスでは、debian/changelogファイルの最初の行からこの情報を展開

し、.changesファイルの Distribution欄に配置します。

パッケージは、通常 unstableへアップロードされます。unstableあるいは experimentalへのアップ

ロードはこれらの suiteを changelogのエントリに記します。サポートされている他の suiteへのアップロー
ドは、曖昧さを避けるために suiteのコードネームを使う必要があります。

実際には、他にも指定可能なディストリビューションがあります: codename-securityですが、その詳細
についてはセキュリティ関連バグの取扱いを読んでください。

同時に複数のディストリビューションへ、パッケージをアップロードすることはできません。

5.5.1 特別な例: 安定版 (stable)と旧安定版 (oldstable)ディストリビューションへ
アップロードする

安定版 (stable) へのアップロードは、安定版リリースマネージャによるレビューのため、パ
ッケージは proposed-updates-new キューに転送され、許可された場合は Debian アーカイブの
stable-proposed-updatesディレクトリにインストールされます。ここから、ここから、安定版 (stable)
の次期ポイントリリースに含まれることになります。

Uploads to a supported stable release should target their suite name in the changelog, i.e. trixie or bookworm.
You should normally use reportbug and the release.debian.org pseudo-package to send a source debdiff,
rationale and associated bug numbers to the stable release managers, and await a request to upload or further
information.

If you are confident that the upload will be accepted without changes, please feel free to upload at the same time
as filing the release.debian.org bug. However if you are new to the process, we would recommend getting
approval before uploading so you get a chance to see if your expectations align with ours.

Either way, there must be an accompanying bug for tracking, and your upload must comply with these acceptance
criteria defined by the the stable release managers. These criteria are designed to help the process be as smooth
and frustration-free as possible.

• The bug you want to fix in stable must be fixed in unstable already (and not waiting in NEW or the
delayed queue).

• The bug should be of severity "important" or higher.

• Bug meta-data - particularly affected versions - must be up to date.

• Fixes must be minimal and relevant and include a sufficiently detailed changelog entry.

• A source debdiff of the proposed change must be included in your request (not just the raw patches or "a
debdiff can be found at $URL").

34 第 5章パッケージの取扱い方

Debian Developer’s Reference,リリース 14.3

• The proposed package must have a correct version number (e.g. ...+deb13u1/...~deb13u1 for trixie
or +deb12u1/~deb12u1 for bookworm) and you should be able to explain what testing it has had. See the
Debian Policy for the version number: https://www.debian.org/doc/debian-policy/ch-controlfields.html#
special-version-conventions

• The update must be built in an stable environment or chroot (or oldstable if you target that).

• Fixes for security issues should be co-ordinated with the security team, unless they have explicitly stated that
they will not issue an DSA for the bug (e.g. via a "no-dsa" marker in theセキュリティ追跡システム).

• Do not close release.debian.org bugs in debian/changelog. They will be closed by the release team
once the package has reached the respective point release.

It is recommended to use reportbug as it eases the creation of bugs with correct meta-data. The release team
makes extensive use of usertags to sort and manage requests and incorrectly tagged reports may take longer to be
noticed and processed.

旧安定版 (oldstable)ディストリビューションへのアップロードはアーカイブされてない限り可能です。

安定版 (stable)と同じルールが適用されます。

In the past, uploads to stable were used to address security problems as well. However, this practice is
deprecated, as uploads used for Debian security advisories (DSA) are automatically copied to the appropriate
proposed-updates archive when the advisory is released. See セキュリティ関連バグの取扱い for detailed
information on handling security problems. If the security team deems the problem to be too benign to be fixed
through a DSA, the stable release managers are usually willing to include your fix nonetheless in a regular upload
to stable.

5.5.2 Special case: the stable-updates suite

Sometimes the stable release managers will decide that an update to stable should be made available to users sooner
than the next scheduled point release. In such cases, they can copy the update to the stable-updates suite, use
of which is enabled by the installer by default.

Initially, the process described in 特別な例: 安定版 (stable) と 旧安定版 (oldstable) ディストリビューショ
ンへアップロードする. should be followed as usual. If you think that the upload should be released via
stable-updates, mention this in your request. Examples of circumstances in which the upload may qualify
for such treatment are:

• The update is urgent and not of a security nature. Security updates will continue to be pushed through the
security archive. Examples include packages broken by the flow of time (c.f. spamassassin and the year
2010 problem) and fixes for bugs introduced by point releases.

• The package in question is a data package and the data must be updated in a timely manner (e.g. tzdata).

• Fixes to leaf packages that were broken by external changes (e.g. video downloading tools and tor).

• Packages that need to be current to be useful (e.g. clamav).

• Uploads to stable-updates should target their suite name in the changelog as usual, e.g. trixie.

Once the upload has been accepted to proposed-updates and is ready for release, the stable release man-
agers will then copy it to the stable-updates suite and issue a Stable Update Announcement (SUA) via the
debian-stable-announce mailing list.

5.5. ディストリビューションを選ぶ 35

https://www.debian.org/doc/debian-policy/ch-controlfields.html#special-version-conventions
https://www.debian.org/doc/debian-policy/ch-controlfields.html#special-version-conventions

Debian Developer’s Reference,リリース 14.3

Any updates released via stable-updates will be included in stable with the next point release as usual.

5.5.3 特別な例: testing/testing-proposed-updatesへアップロードする

詳細については、直接テスト版を更新するにある情報を参照してください。

5.6 パッケージをアップロードする

5.6.1 Source and binary uploads

Each upload to Debian consists of a signed .changes file describing the requested change to the archive, plus the
source and binary package files that are referenced by the .changes file.

If possible, the version of a package that is uploaded should be a source-only changes file. These are typically
named *_source.changes, and reference the source package, but no binary .deb or .udeb packages. All of the
corresponding architecture-dependent and architecture-independent binary packages, for all architectures, will be
built automatically by the build daemons in a controlled and predictable environment (see wanna-build for more
details). However, there are several situations where this is not possible.

The first upload of a new source package (see新規パッケージ) must include binary packages, so that they can be
reviewed by the archive administrators before they are added to Debian.

If new binary packages are added to an existing source package, then the first upload that lists the new binary
packages in debian/control must include binary packages, again so that they can be reviewed by the archive
administrators before they are added to Debian. It is preferred for these uploads to be done via the experimental
suite.

Uploads that will be held for review in other queues, such as packages being added to the *-backports suites,
might also require inclusion of binary packages.

The build daemons will automatically attempt to build any main or contrib package for which the build-
dependencies are available. Packages in non-free and non-free-firmware will not be built by the build dae-
mons unless the package has been marked as suitable for auto-building (see non-freeのパッケージを auto-build
可能であるとマークする).

The build daemons only install build-dependencies from the main archive area. This means that if a source pack-
age has build-dependencies that are in the contrib, non-free or non-free-firmware archive areas, then
uploads of that package need to include prebuilt binary packages for every architecture that will be supported.
By definition this can only be the case for source packages that are themselves in the contrib, non-free or
non-free-firmware archive areas.

Bootstrapping a new architecture, or a new version of a package with circular dependencies (such as a self-hosting
compiler), will sometimes also require an upload that includes binary packages.

Binary packages in the main archive area that were not built by Debian's official build daemons will not usually be
allowed to migrate from unstable to testing, so an upload that contains binary packages built by the package's
maintainer must usually be followed by a source-only upload after the binary upload has been accepted. This
restriction does not apply to contrib, non-free or non-free-firmware packages.

36 第 5章パッケージの取扱い方

Debian Developer’s Reference,リリース 14.3

5.6.2 ftp-masterにアップロードする

To upload a package, you should upload the files (including the signed changes and dsc file) with anonymous ftp
to ftp.upload.debian.org in the directory /pub/UploadQueue/. To get the files processed there, they need to
be signed with a key in the Debian Developers keyring or the Debian Maintainers keyring (see https://wiki.debian.
org/DebianMaintainer).

changesファイルは最後に転送する必要があることに注意してください。そうしないとアーカイブのメン
テナンスを行っているソフトが changesファイルをパースして全てのファイルがアップロードされていな
いと判断して、アップロードは rejectされるかもしれません。

パッケージのアップロードを行う際には dupload や dputが便利なことにも気づくことでしょう。これらの
便利なプログラムは、パッケージを Debianにアップロードする作業を自動化するのに役立ちます。

パッケージを削除もしくはアップロードを取り消すには ftp://ftp.upload.debian.org/pub/UploadQueue/
READMEと dcut Debianパッケージを参照してください。

Finally, you should think about the status of your package with relation to testing before uploading to unstable.
If you have a version in unstable waiting to migrate then it is generally a good idea to let it migrate before
uploading another new version. You should also check the Debianパッケージトラッカー for transition warnings
to avoid making uploads that disrupt ongoing transitions.

5.6.3 遅延アップロード

パッケージを直ちにアップロードするのが良い時もありますが、パッケージがアーカイブに入るのが数日

後であるのが良いと思う時もあります。例えば、Non-Maintainer Upload (NMU)の準備をする際は、メンテ
ナに対して猶予期間を数日間与えたいと思うでしょう。

delayedディレクトリにアップロードされると、パッケージは the deferred uploads queueに保存されます。
指定した待ち時間が終わると、パッケージは処理のため通常の incomingディレクトリに移動されます。こ
の作業は ftp.upload.debian.orgの DELAYED/X-dayディレクトリへのアップロードを通じて自動的に
処理されます (X は 0から 15の間です)。0-dayは一日に複数回 ftp.upload.debian.orgへアップロード

するのに使われます。

dputを使うと、パッケージを遅延キューに入れるのに --delayedDELAY パラメータを使えます。

5.6.4 セキュリティアップロード

Do NOT upload a package to the security upload queue (on *.security.upload.debian.org) without prior
authorization from the security team. If the package does not exactly meet the team's requirements, it will cause
many problems and delays in dealing with the unwanted upload. For details, please seeセキュリティ関連バグの
取扱い.

5.6.5 他のアップロードキュー

ヨーロッパにはもう一つのアップロードキューが ftp://ftp.eu.upload.debian.org/pub/UploadQueue/にありま
す。操作方法は ftp.upload.debian.orgと同じですが、ヨーロッパ圏の開発者に対しては、より速いは

ずです。

5.6. パッケージをアップロードする 37

ftp://ftp.upload.debian.org/pub/UploadQueue/
https://wiki.debian.org/DebianMaintainer
https://wiki.debian.org/DebianMaintainer
ftp://ftp.upload.debian.org/pub/UploadQueue/README
ftp://ftp.upload.debian.org/pub/UploadQueue/README
https://ftp-master.debian.org/deferred.html
ftp://ftp.eu.upload.debian.org/pub/UploadQueue/

Debian Developer’s Reference,リリース 14.3

パッケージは sshを使って ssh.upload.debian.orgへアップロードすることも可能です。ファイルは /

srv/upload.debian.org/UploadQueueに置く必要があります。このキューは遅延アップロードをサポー

トしていません。

5.6.6 Notifications

Debianアーカイブメンテナはパッケージのアップロードに関して責任を持っています。多くの部分は、アッ
プロードはアーカイブ用のメンテナンスツール dak process-uploadによって日々自動的に行われていま

す。特に、不安定版 (unstable)に存在しているパッケージの更新は自動的に処理されます。それ以外の

場合、特に新規パッケージの場合は、アップロードされたパッケージをディストリビューションに含める

のは手動で行われます。アップロードが手動で処理される場合は、アーカイブへの変更は実施されるまで

に一ヶ月ほどかかります。お待ちください。

どの場合であっても、パッケージがアーカイブに追加されたことや、バグがアップロードで閉じられたこ

とを告げるメールでの通知を受け取ることになります。あなたが閉じようとしたバグが処理されてない場

合は、この通知を注意深く確認してください。

インストール通知は、パッケージがどのセクションに入ったかを示す情報を含んでいます。不一致がある

場合は、それを示す別のメール通知を受け取ります。以下も参照ください。

キュー経由でアップロードした場合は、キューデーモンソフトウェアもメールで通知を行うことに留意し

てください。

Also note that new uploads are announced on the IRCチャンネル channel #debian-devel-changes. If your up-
load fails silently, it could be that your package is improperly signed, in which case you can find more explanations
on ssh.upload.debian.org:/srv/upload.debian.org/queued/run/log.

5.7 パッケージのセクション、サブセクション、優先度を指定する
debian/control ファイルの セクション (Section) フィールドと 優先度 (Priority) フィールドは実

際にアーカイブ内でどこに配置されるか、あるいはプライオリティが何かという指定ではありません。

debian/controlファイル中の値は、実際のところは単なるヒントです。

アーカイブメンテナは、override ファイル内でパッケージについて定められたセクションと優先度を常に

確認しています。override ファイルと debian/controlで指定されたパッケージのフィールドに不一致

がある場合、パッケージがアーカイブにインストールされる際に相違について記述されたメールを受け取り

ます。debian/controlファイルを次回のアップロード時に修正することもできますし、override ファ

イルに変更を加えるように依頼するのもよいでしょう。

パッケージが現状で置かれているセクションを変更するには、まずパッケージの debian/controlファイル

が正しいことを確認する必要があります。次に、ftp.debian.orgに対し、あなたのパッケージに対するセ

クションあるいは優先度について古いものから新しいものへ変更する依頼のバグ登録をします。override:

PACKAGE1:section/priority, [...], PACKAGEX:section/priorityのようなサブジェクトを使い、バ

グ報告の本文に変更に関する根拠を記述してください。

override ファイル についての詳細は、dpkg-scanpackages 1 と https://www.debian.org/Bugs/Developer#
maintincorrectを参照してください。

セクションで書かれているように、セクション (Section)フィールドにはセクション同様にサブセクショ

ンも記述するのに注意ください。セクションがmainの場合は、それは書かないようにしてください。利用

38 第 5章パッケージの取扱い方

https://www.debian.org/Bugs/Developer#maintincorrect
https://www.debian.org/Bugs/Developer#maintincorrect

Debian Developer’s Reference,リリース 14.3

可能なサブセクションは https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsectionsで検索でき
ます。

5.8 バグの取扱い
すべての開発者は Debianバグ追跡システムを取り扱えるようでなければいけません。これは、どの様にし
てバグ報告を正しく登録するか (バグ報告参照)、どの様に更新及び整理するか、そしてどの様にして処理
をして完了するかを知っていることを含みます。

バグ追跡システムの機能は、Debian BTS 開発者向け情報に記載されています。これには、バグの完了処
理・追加メッセージの送信・重要度とタグを割り当てる・バグを転送済み (Forwarded)にする・その他が含
まれています。

バグを他のパッケージに割り当てし直す、同じ問題についての別々のバグ報告をマージする、早まってク

ローズされたバグの再オープンなどの作業は、いわゆる制御メールサーバと呼ばれるものを使って処理さ

れています。このサーバで利用可能なすべてのコマンドは、BTS制御サーバドキュメントに記載されてい
ます。

5.8.1 バグの監視

良いメンテナになりたい場合は、あなたのパッケージに関する Debianバグ追跡システム (BTS)のページ
を定期的にチェックする必要があります。BTSには、あなたのパッケージに対して登録されている全ての
バグが含まれています。登録されているバグについては、以下のページを参照することで確認できます:
https://bugs.debian.org/yourlogin@debian.org

メンテナは、bugs.debian.orgのメールアドレス経由で BTSに対応します。利用可能なコマンドについ
てのドキュメントは https://www.debian.org/Bugs/で参照可能ですし、もし doc-debianパッケージをイン

ストールしてあれば、ローカルファイル /usr/share/doc/debian/bug-*で見ることも可能です。

定期的にオープンになっているバグについてのレポートを受け取るのも良いでしょう。あなたのパッケー

ジでオープンになっているバグの全一覧を毎週受け取りたい場合、以下のような cronジョブを追加します:

ask for weekly reports of bugs in my packages

0 17 * * fri echo "index maint address" | mail request@bugs.debian.org

addressは、あなたの公式な Debianパッケージメンテナとしてのメールアドレスに置き換えてください。

5.8.2 バグへの対応

When responding to bugs, make sure that any discussion you have about bugs is sent to the original submitter
of the bug, the bug itself and (if you are not the maintainer of the package) the maintainer. Sending an email
to 123@bugs.debian.org will send the mail to the maintainer of the package and record your email with the
bug log. If you don't remember the submitter email address, you can use 123-submitter@bugs.debian.org
to also contact the submitter of the bug. The latter address also records the email with the bug log, so if you are
the maintainer of the package in question, it is enough to send the reply to 123-submitter@bugs.debian.org.
Otherwise you should include 123@bugs.debian.org so that you also reach the package maintainer.

FTBFSである旨のバグを受け取った場合、これはソースからビルドできないこと (Fails to build from source)
を意味します。移植作業をしている人たちはこの略語をよく使います。

5.8. バグの取扱い 39

https://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
https://www.debian.org/Bugs/
https://www.debian.org/Bugs/Developer
https://www.debian.org/Bugs/server-control
https://www.debian.org/Bugs/
https://www.debian.org/Bugs/

Debian Developer’s Reference,リリース 14.3

既にバグに対処していた場合 (例えば修正済みの時)、説明のメッセージを 123-done@bugs.debian.orgに
送ることで doneとマークしておいて (閉じて)ください。パッケージを変更してアップロードすることで
バグを修正する場合は、新規アップロードでバグがクローズされる時に記載されているように自動的にバ

グを閉じることができます。

closeコマンドを control@bugs.debian.orgに送って、バグサーバ経由でバグを閉じるのは決してしては

いけません。そのようにした場合、元々の報告者は何故バグが閉じられたのかという情報を得られません。

5.8.3 バグを掃除する

パッケージメンテナになると、他のパッケージにバグを見つけたり、自分のパッケージに対して報告され

たバグが実際には他のパッケージにあるバグであったりということが頻繁にあるでしょう。バグ追跡シス

テムの機能は Debian開発者向けの BTSドキュメントに記載されています。バグ報告の再指定 (reassign)
やマージ (merge)、そしてタグ付けなどの作業は BTS制御サーバのドキュメントに記述されています。こ
の章では、Debian開発者から集められた経験を元にしたバグの扱い方のガイドラインを含んでいます。

他のパッケージで見つけた問題についてバグを登録するのは、メンテナとしての責務の一つです。詳細につ

いてはバグ報告を参照してください。しかし、自分のパッケージのバグを管理するのはさらに重要です。

以下がバグ報告を取り扱う手順です:

1. 報告が実際にバグに関連するものか否かを決めてください。ユーザはドキュメントを読んでいない
ため、誤ったプログラムの使い方をしているだけのことが時々あります。このように判断した場合

は、ユーザに問題を修正するのに十分な情報を与えて (良いドキュメントへのポインタを教えるなど
して)バグを閉じます。同じ報告が何度も繰り返し来る場合には、ドキュメントが十分なものかどう
か、あるいは有益なエラーメッセージを与えるよう、誤った使い方を検知していないのでは、と自身

に問い直してください。これは開発元の作者に伝える必要がある問題かもしれません。

If the bug submitter disagrees with your decision to close the bug, they may reopen it until you find an
agreement on how to handle it. If you don't find any, you may want to tag the bug wontfix to let people
know that the bug exists but that it won't be corrected. Please make sure that the bug submitter understands
the reasons for your decision by adding an explanation to the message that adds the wontfix tag.

If this situation is unacceptable, you (or the submitter) may want to require a decision of the technical com-
mittee by filing a new bug against the tech-ctte pseudo-package with a summary of the situation. Before
doing so, please read the recommended procedure.

2. バグが実際にあるが、他のパッケージによって引き起こされている場合は、バグを正しいパッケージ
に再指定 (reassign)します。どのパッケージに再指定するべきかが分からない場合は、IRCチャンネ
ルか debian-devel@lists.debian.orgで聞いてください。再指定するパッケージのメンテナに通

知をしてください。例えば packagename@packages.debian.org宛にメッセージを Cc: してメール
中に理由を説明するなどします。単に再指定しただけでは再指定された先のメンテナにはメールは

送信されませんので、彼らがパッケージのバグ一覧を見るまでそれを知ることはありません。

バグがあなたのパッケージの動作に影響する場合は、バグを複製し (clone)、複製したバグをその挙
動を実際に起こしているパッケージに再指定することを検討してください。さもなければ、あなたの

パッケージのバグ一覧にバグが見つからないので、多分ユーザに同じバグを何度も繰り返し報告され

る羽目になる可能性があります。あなたは、再指定 (reassign)によって「自分の」バグということを
防ぎ、バグの複製 (clone)によって関係があることを記載しておく必要があります。

40 第 5章パッケージの取扱い方

https://www.debian.org/Bugs/Developer
https://www.debian.org/Bugs/server-control
https://www.debian.org/devel/tech-ctte

Debian Developer’s Reference,リリース 14.3

3. 時々、重要度の定義に合うようにバグの重要度を調整する必要もあります。これは、人々はバグ修正
を確実に早くしてもらうために重要度を極端に上げようとするからです。要望された変更点が単に

体裁的なものな時には、バグは要望 (wishlist)に格下げされるでしょう。

4. バグが確かにあるが既に他の誰かによって同じ問題が報告されている場合は、2つの関連したバグを
BTSの mergeコマンドを使って 1つにマージします。このようにすると、バグが修正された時に全
ての投稿者に通知がいきます (ですが、そのバグ報告の投稿者へのメールは報告の他の投稿者には自
動的には通知されないことに注意してください)。mergeコマンドや類似の unmergeコマンドの技術
詳細については、BTS制御サーバドキュメントを参照してください。

5. バグ報告者は情報を書き漏らしている場合、必要な情報を尋ねる必要があります。その様なバグに印を
つけるには moreinfoタグを使います。さらに、そのバグを再現できない場合には、unreproducible

タグを付けます。誰もそのバグを再現できない場合、どうやって再現するのか、さらに情報を何ヶ月

経っても、この情報が誰からも送られてこない場合はバグは閉じても構いません。

6. バグがパッケージに起因する場合、さっさと直します。自分では直せない場合は、バグに helpタグ

を付けます。debian-devel@lists.debian.orgや debian-qa@lists.debian.orgで助けを求める

ことも出来ます。開発元 (upstream)の問題であれば、作者に転送する必要があります。バグを転送す
るだけでは十分ではありません。リリースごとにバグが修正されているかどうかを確認しなければ

いけません。もし修正されていれば、それを閉じ、そうでなければ作者に確認を取る必要がありま

す。必要な技能を持っていてバグを修正するパッチが用意できる場合は、同時に作者に送りましょ

う。パッチを BTSに送付してバグに patchタグを付けるのを忘れないでください。

7. ローカル環境でバグを修正した、あるいは VCSリポジトリに修正をコミットした場合には、バグに
pendingタグを付けてバグが修正されたことと次のアップロードでバグが閉じられるであろうこと

を回りに知らせます (changelogに closes: を追加します)。これは複数の開発者が同一のパッケー
ジで作業している際に特に役立ちます。

8. Once a corrected package is available in the archive, the bug should be closed indicating the version in which
it was fixed. This can be done automatically; read新規アップロードでバグがクローズされる時.

5.8.4 新規アップロードでバグがクローズされる時

バグや問題があなたのパッケージで修正されたとしたら、そのバグを閉じるのはパッケージメンテナとし

ての責任になります。しかし、バグを修正したパッケージが Debianアーカイブに受け入れられるまではバ
グを閉じてはいけません。従って、一旦更新したパッケージがアーカイブにインストールされたという通

知を受け取った場合は、BTSでバグを閉じることができますし、そうしなければいけません。もちろん、
バグは正しいバージョンで閉じなくてはいけません。

ですが、アップロード後に手動でバグをクローズしなくても済む方法があります̶ debian/changelogに

以下の特定の書き方にて修正したバグを列挙すれば、それだけで後はアーカイブのメンテナンスソフトが

バグをクローズしてくれます。例:

acme-cannon (3.1415) unstable; urgency=low

* Frobbed with options (closes: Bug#98339)

* Added safety to prevent operator dismemberment, closes: bug#98765,

bug#98713, #98714.

* Added man page. Closes: #98725.

5.8. バグの取扱い 41

Debian Developer’s Reference,リリース 14.3

技術的に言うと、どの様にしてバグを閉じる changelogが判別されているかを以下の Perlの正規表現にて
記述しています:

/closes:\s*(?:bug)?\#?\s?\d+(?:,\s*(?:bug)?\#?\s?\d+)*/ig

We prefer the closes: #XXX syntax, as it is the most concise entry and the easiest to integrate with the text
of the changelog. Unless specified differently by the -v-switch to dpkg-buildpackage, only the bugs closed
in the most recent changelog entry are closed (basically, exactly the bugs mentioned in the changelog-part in the
.changes file are closed).

歴史的に、Non-Maintainer Upload (NMU) と判別されるアップロードは closed ではなく fixed とタグ

がされてきましたが、この習慣はバージョントラッキングの進化によって廃れています。同じことが

fixed-in-experimentalタグにも言えます。

If you happen to mistype a bug number or forget a bug in the changelog entries, don't hesitate to undo any damage
the error caused. To reopen wrongly closed bugs, send a reopen XXX command to the bug tracking system's
control address, control@bugs.debian.org. To close any remaining bugs that were fixed by your upload, email
the .changes file to XXX-done@bugs.debian.org, where XXX is the bug number, and put Version: YYY and
an empty line as the first two lines of the body of the email, where YYY is the first version where the bug has been
fixed.

上に書いたような changelogを使ったバグの閉じ方は必須ではない、ということは念頭に置いておいてく
ださい。行ったアップロードとは無関係に単にバグを閉じたい、という場合は、説明をメールに書いて

XXX-done@bugs.debian.orgに送ってバグを閉じてください。そのバージョンのパッケージでの変更が
バグに何も関係ない場合は、そのバージョンの changelogエントリではバグを閉じないでください。

どのように changelogのエントリを書くのか、一般的な情報については debian/changelogのベストプラク
ティスを参照してください。

5.8.5 セキュリティ関連バグの取扱い

機密性が高いその性質上、セキュリティ関連のバグは注意深く取り扱わねばなりません。この作業をコー

ディネイトし、未処理のセキュリティ問題を追い続け、セキュリティ問題についてメンテナを手助けした

り修正自体を行い、セキュリティ勧告を出し、security.debian.orgを維持するために Debianセキュリ
ティチームが存在します。

Debianパッケージ中のセキュリティ関連のバグに気づいたら、あなたがメンテナであるかどうかに関わら
ず、問題に関する正確な情報を集め、まずは team@security.debian.org宛にメールを出してセキュリ

ティチームへ連絡を取ってください。お望みであれば、Debianセキュリティ担当窓口の鍵を使ってメール
を暗号化できます。詳細は https://www.debian.org/security/faq#contactを参照してください。チームに問い
合わせること無く安定版 (stable)向けのパッケージをアップロードしないでください。例として、役に
立つ情報は以下のようなものになります:

• バグが既に公開されているか否か

• バグによって、どのバージョンが影響を受けると分かっているか。サポートされている Debianのリ
リース、ならびにテスト版 (testing)及び不安定版 (unstable)にある各バージョンをチェックし
てください。

• 利用可能なものがあれば、修正内容 (パッチが特に望ましい)

42 第 5章パッケージの取扱い方

https://www.debian.org/security/faq#contact

Debian Developer’s Reference,リリース 14.3

• 自身で準備した修正パッケージ (まずはセキュリティ問題に対処するパッケージを用意するを読ん
で、debdiffの結果、あるいは .diff.gzと .dscファイルだけを送ってください)

• テストについて何かしらの手助けになるもの (攻撃コード、リグレッションテストなど)

• 勧告に必要になる情報 (セキュリティ勧告参照)

パッケージメンテナとして、あなたは安定版リリースについてもメンテナンスする責任を持ちます。あなた

がパッチの評価と更新パッケージのテストを行うのに最も適任な人です。ですから、以下のセキュリティ

チームによって取り扱ってもらうため、どのようにしてパッケージを用意するかについての章を参照して

ください。

5.8.5.1 セキュリティ追跡システム

セキュリティチームは集約的なデータベース、Debianセキュリティ追跡システム (Debian Security Tracker)
をメンテナンスしています。これはセキュリティ問題として知られている全ての公開情報を含んでいます:
どのパッケージ／バージョンが影響を受ける／修正されているか、つまりは安定版、テスト版、不安定版

が脆弱かどうか、という情報です。まだ機密扱いの情報は追跡システムには追加されません。

特定の問題について検索することもできますし、パッケージ名でも検索できます。あなたのパッケージを

探して、どの問題がまだ未解決かを確認してください。できれば追加情報を提供するか、パッケージの問

題に対処するのを手伝ってください。やり方は追跡システムのウェブページにあります。

5.8.5.2 秘匿性

Debian内での他の多くの活動とは違い、セキュリティ問題に関する情報については、暫くの間秘密にして
おく必要がしばしばあります。これによって、ソフトウェアのディストリビュータがユーザが危険にさら

されるのを最小限にするため、公開時期を合わせることができます。今回がそうであるかは、問題と対応

する修正の性質や、既に既知のものとなっているかどうかによります。

開発者がセキュリティ問題を知る方法はいくつかあります:

• 公開フォーラム (メーリングリスト、ウェブサイトなど)で知らせる

• 誰かがバグ報告を登録している

• 誰かがプライベートなメールで教えてきた

最初の二つのケースでは、情報は公開されていて可能な限り早く修正することが重要です。しかしながら

最後のケースは、公開情報ではないかもしれません。この場合は、問題に対処するのに幾つか取り得る選

択肢があります:

• セキュリティの影響度が小さい場合、問題を秘密にしておく必要はなく、修正を行ってリリースする
のが良い場合がしばしばあります。

• 問題が深刻な場合、他のベンダと情報を共有してリリースをコーディネイトする方が望ましいでしょ
う。セキュリティチームは様々な組織／個人と連絡を取りつづけ、この問題に対応することができ

ます。

どのような場合でも、問題を報告した人がこれを公開しないように求めているのであれば、明白な例外と

して Debianの安定版リリースに対する修正を作成してもらうためにセキュリティチームへ連絡すること以
外、この様な要求は尊重されるべきです。機密情報をセキュリティチームに送る場合は、この点を明示し

ておくのを忘れないでください。

5.8. バグの取扱い 43

https://security-tracker.debian.org/

Debian Developer’s Reference,リリース 14.3

機密を要する場合は、修正を不安定版 (unstable) (や公開 VCSリポジトリなどその他どこへも)へ修正を
アップロードしないよう、注意してください。コードその物が公開されている場合、変更の詳細を難読化

するだけでは十分ではなく、皆によって解析され得る (そしてされる)でしょう。

機密であることを要求されたにも関わらず、情報を公開するのには 2つの理由があります: 問題が一定期
間既知の状態になっている、あるいは問題や攻撃コードが公開された場合です。

セキュリティチームは、機密事項に関して通信を暗号化できる PGP鍵を持っています。詳細については、
セキュリティチーム FAQを参照してください。

5.8.5.3 セキュリティ勧告

セキュリティ勧告は現在のところ、リリースされた安定版ディストリビューションについてのみ、取り扱

われます。テスト版 (testing)や不安定版 (unstable)についてではありません。リリースされると、セ
キュリティ勧告は email-debian-security-announce;メーリングリストに送られ、セキュリティのウェブペー
ジに掲載されます。セキュリティ勧告はセキュリティチームによって記述、掲載されます。しかし、メン

テナが情報を提供できたり、文章の一部を書けるのであれば、彼らは当然そんなことは気にしません。勧

告にあるべき情報は以下を含んでいます:

• 以下のようなものを含めた問題の説明と範囲:

– 問題の種類 (権限の上昇、サービス拒否など)

– 何の権限が得られるのか、(もし分かれば)誰が得るのか

– どのようにして攻撃が可能なのか

– 攻撃はリモートから可能なのかそれともローカルから可能なのか

– どのようにして問題が修正されたのか

この情報によって、ユーザがシステムに対する脅威を評価できるようになります。

• 影響を受けるパッケージのバージョン番号

• 修正されたパッケージのバージョン番号

• どこで更新されたパッケージを得るかという情報 (通常はDebianのセキュリティアーカイブからです)

• 開発元のアドバイザリへの参照、CVE番号、脆弱性の相互参照について役立つその他の情報

5.8.5.4 セキュリティ問題に対処するパッケージを用意する

あなたがセキュリティチームに対し、彼らの職務に関して手助けできる方法の一つは、安定版 Debianリ
リース用のセキュリティ勧告に適した修正版パッケージを提供することです。

When an update is made to the stable release, care must be taken to avoid changing system behavior or introducing
new bugs. In order to do this, make as few changes as possible to fix the bug. Users and administrators rely
on the exact behavior of a release once it is made, so any change that is made might break someone's system.
This is especially true of libraries: make sure you never change the API (Application Program Interface) or ABI
(Application Binary Interface), no matter how small the change.

これは、開発元の新しいリリースバージョン (new upstream version)への移行が良い解決策ではないことを
意味しています。代わりに、関連する変更を現在の Debian安定版リリースに存在しているバージョンへ

44 第 5章パッケージの取扱い方

https://www.debian.org/security/faq#contact
https://www.debian.org/security/
https://www.debian.org/security/
https://cve.mitre.org

Debian Developer’s Reference,リリース 14.3

バックポートするべきです。通常、開発元のメンテナは助けが必要であれば手伝おうとしてくれます。そ

うでない場合は、Debianセキュリティチームが手助けすることができます。

いくつかのケースでは、例えば大量のソースコードの変更や書き直しが必要など、セキュリティ修正をバッ

クポートできないことがあります。この様な場合、新しいバージョン (new upstream version)へ移行する必
要があるかもしれません。しかし、これは極端な状況の場合にのみ行われるものであり、実行する前に必

ずセキュリティチームと調整をしなければなりません。

これに関してはもう一つ重要な指針があります: 必ず変更についてテストをしてください。攻撃用コード
(exploit)が入手可能な場合には、それを試してみて、パッチを当てていないパッケージで成功するか、修
正したパッケージでは失敗することかどうかを確かめてみてください。他の確認として、セキュリティ修

正は時折表面上はそれと関係が無いような機能を壊すことがあるので、通常の動作も同様にテストしてく

ださい。

脆弱性の修正に直接関係しない変更をパッケージへ加えないようにしてください。この様な変更は元に戻

さなくてはならなくなるだけで、時間を無駄にします。他に直したいバグがパッケージにある場合は、セ

キュリティ勧告が発行された後、通常通りに proposed-updateにアップロードを行ってください。セキュリ
ティ更新の仕組みは、それ以外の方法では安定版リリースから rejectされるであろう変更をあなたのパッ
ケージに加える方法ではありませんので、この様な事はしないでください。

変更点を可能な限り見直してください。以前のバージョンとの変更点を繰り返し確認してください (これ
には patchutilsパッケージの interdiffや devscriptsの debdiffが役立ちます。debdiff を参照して
ください)。

以下の項目を必ず確認してください

• debian/changelog で 正しいディストリビューションを対象にする: codename-security (例えば
trixie-security)。distribution-proposed-updatesや stableを対象にしないでください!

• 説明が十分にされている、意味がある changelogエントリを書くこと。他の人は、これらを元に特定
のバグが修正されているのかを見つけ出します。登録されている Debianバグに対して closes: 行

を追加すること。外部のリファレンス、できれば CVE識別番号を常に含めること、そうすれば相互
参照が可能になります。しかし、CVE識別番号がまだ付与されていない場合には、それを待たずに
作業を進めてください。識別番号は後ほど付与することができます。

• バージョン番号が正しいことを確認する。現在のパッケージより大きく、しかし以降のディス
トリビューションよりパッケージバージョンが小さい必要があります。分からない場合は dpkg

--compare-versions でテストしてください。以前のアップロードで既に使っているバージョン

番号を再利用しないように注意してください。そうしないと番号が binNMUと衝突します。+debXu1
(X はメジャーリリース番号)を追加するのが通例です。例えば 1:2.4.3-4+deb13u1とします。もち

ろん 1はアップロードするごとに増やします。

• これまでに (以前のセキュリティ更新によって) security.debian.org へ開発元のソースコードを
アップロードしていなければ、開発元のソースコードを全て含めてアップロードするパッケージをビ

ルドする (dpkg-buildpackage -sa)。以前、同じ開発元のバージョンで security.debian.orgに

アップロードしたことがある場合は、開発元のソースコード無しでアップロードしても構いません

(dpkg-buildpackage -sd)。

• 通常のアーカイブで使われているのと全く同じ ``*.orig.tar.{gz,bz2,xz}``を必ず使うようにしてくださ
い。さもなくば、後ほどセキュリティ修正を mainアーカイブに移動することができません。

• ビルドを行っているディストリビューションからインストールしたパッケージだけが含まれているク

5.8. バグの取扱い 45

Debian Developer’s Reference,リリース 14.3

リーンなシステム上でパッケージをビルドしてください。その様なシステムを自分で持っていない

場合は、debian.orgマシン (Debianのマシン群を参照してください)を使うこともできますし、chroot
を設定することもできます (pbuilder と debootstrapを参照してください)。

5.8.5.5 修正したパッケージをアップロードする

Do NOT upload a package to the security upload queue (on *.security.upload.debian.org) without prior
authorization from the security team. If the package does not exactly meet the team's requirements, it will cause
many problems and delays in dealing with the unwanted upload.

セキュリティチームと調整する事無しに proposed-updatesへ修正したものをアップロードしないように

してください。security.debian.orgからパッケージは proposed-updatesディレクトリに自動的にコ

ピーされます。アーカイブに同じ、あるいはより高いバージョン番号のものが既にインストールされてい

る場合は、セキュリティアップデートはアーカイブシステムに rejectされます。そうすると、安定版ディ
ストリビューションはこのパッケージに対するセキュリティ更新無しで終了してしまうでしょう。

Once you have created and tested the new package and it has been approved by the security team, it needs to be
uploaded so that it can be installed in the archives. For security uploads, the place to upload to is ftp://ftp.
security.upload.debian.org/pub/SecurityUploadQueue/.

セキュリティキューへアップロードしたものが許可されると、パッケージは自動的にすべてのアーキテク

チャに対してビルドされ、セキュリティチームによる確認の為に保存されます。

Uploads that are waiting for acceptance or verification are only accessible by the security team. This is necessary
since there might be fixes for security problems that cannot be disclosed yet.

セキュリティチームのメンバーがパッケージを許可した場合は、proposedパッケージに対する ftp-master.

debian.org上の適切な distribution-proposed-updatesと同様に security.debian.org上にインストー

ルされます。

5.9 パッケージの移動、削除、リネーム、放棄、引き取り、再導入
アーカイブの変更作業のいくつかは、Debianのアップロードプロセスでは自動的なものにはなっていませ
ん。これらの手続きはメンテナによる手動での作業である必要があります。この章では、この様な場合に

何をするかのガイドラインを提供します。

5.9.1 パッケージの移動

時折、パッケージは属しているセクションが変わることがあります。例えば「non-free」セクションのパッ

ケージが新しいバージョンで GPLになった場合、パッケージは「main」か「contrib」に移動する必要があ
ります。1

パッケージのどれかがセクションを変更する必要がある場合、希望するセクションにパッケージを配置す

るためパッケージの control情報を変更してから再アップロードします (詳細については Debianポリシー
マニュアルを参照してください)。必ず .orig.tar.{gz,bz2,xz}を (開発元のバージョンが新しいものに
なったのではなくても)アップロードに含める必要があります。新しいセクションが正しい場合は、自動的
に移動されます。移動されない場合には、何が起こったのかを理解するために ftpmasterに連絡を取ります。

1 パッケージがどのセクションに属するかのガイドラインは Debianポリシーマニュアルを参照してください。

46 第 5章パッケージの取扱い方

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

Debian Developer’s Reference,リリース 14.3

一方で、もしパッケージの一つのサブセクション (例:「devel」「admin」)を変更する必要がある、という場
合には、手順は全く異なります。パッケージの controlファイルにあるサブセクションを修正して、再アッ
プロードします。また、パッケージのセクション、サブセクション、優先度を指定するに記述してあるよ

うに overrideファイルを更新する必要が出てくるでしょう。

5.9.2 パッケージの削除

If for some reason you want to completely remove a package (say, if it is an old compatibility library which is
no longer required), you need to file a bug against ftp.debian.org asking that the package be removed; as
with all bugs, this bug should normally have normal severity. The bug title should be in the form RM: package
[architecture list] -- reason, where package is the package to be removed and reason is a short summary of the
reason for the removal request. [architecture list] is optional and only needed if the removal request only applies
to some architectures, not all. Note that the reportbug will create a title conforming to these rules when you use
it to report a bug against the ftp.debian.org pseudo-package.

If you want to remove a package you maintain, you should note this in the bug title by prepending ROM (Request
Of Maintainer). There are several other standard acronyms used in the reasoning for a package removal; see
https://ftp-master.debian.org/removals.html for a complete list. That page also provides a convenient overview of
pending removal requests.

Note that removals can only be done for the unstable, experimental and stable distributions. Packages are not
removed from testing directly. Rather, they will be removed automatically after the package has been removed
from unstable and no package in testing depends on it. (Removals from testing are possible though by filing
a removal bug report against the release.debian.org pseudo-package. Seeテスト版からの削除.)

例外として、明示的な削除依頼が必要ない場合が一つあります: (ソース、あるいはバイナリ)パッケージ
がソースからビルドされなくなった場合、半自動的に削除されます。バイナリパッケージの場合、これは

このバイナリパッケージを生成するソースパッケージがもはや存在しないということを意味します。バイ

ナリパッケージがいくつかのアーキテクチャで生成されなくなったという場合には、削除依頼は必要です。

ソースパッケージの場合は、関連の全バイナリパッケージが別のソースパッケージによって上書きされる

のを意味しています。

削除依頼では、依頼を判断する理由を詳細に書く必要があります。これは不必要な削除を避け、何故パッ

ケージが削除されたのかを追跡できるようにするためです。例えば、削除されるパッケージにとって代わ

るパッケージの名前を記述します。

通常は自分がメンテナンスしているパッケージの削除のみを依頼します。その他のパッケージを削除した

い場合は、メンテナの許可を取る必要があります。パッケージが放棄されたのでメンテナがいない場合は、

まず debian-qa@lists.debian.orgで削除依頼について議論をしてください。パッケージの削除につい

ての合意ができたら、削除依頼の新規バグを登録するのではなく、wnppパッケージに対して登録されてい

るバグを reassignして O:に題名を変更するべきです。

この件、あるいはパッケージ削除に関するその他のトピックについて、さらなる情報を https://wiki.debian.
org/ftpmaster_Removalsや https://qa.debian.org/howto-remove.htmlで参照できます。

パッケージを破棄しても構わないか迷う場合には、意見を聞きに debian-devel@lists.debian.orgへメー

ルしてください。aptの apt-cacheプログラムも重要です。apt-cache showpkgパッケージ名として起動

した際、プログラムはパッケージ名の被依存関係を含む詳細を表示します。他にも apt-cache rdepends、

apt-rdepends、build-rdeps (devscriptsパッケージに含まれる)、grep-dctrlなどの有用なプログラム

5.9. パッケージの移動、削除、リネーム、放棄、引き取り、再導入 47

https://ftp-master.debian.org/removals.html
https://wiki.debian.org/ftpmaster_Removals
https://wiki.debian.org/ftpmaster_Removals
https://qa.debian.org/howto-remove.html

Debian Developer’s Reference,リリース 14.3

が非依存関係を含む情報を表示します。みなしご化されたパッケージの削除は、debian-qa@lists.debian.

orgで話し合われます。

一旦パッケージが削除されたら、パッケージのバグを処理する必要があります。実際のコードが別のパッケー

ジに含まれるようになったので、別のパッケージへバグを付け替える (例えば、libfoo13が上書きするので、
libfoo12が削除される)か、あるいはソフトウェアがもう Debianの一部では無くなった場合にはバグを閉
じるかする必要があります。バグを閉じる場合、過去の Debianのリリースにあるパッケージバージョンで
修正されたとマークするのを避けてください。バージョン <most-recent-version-ever-in-Debian>+rm

で修正されたとマークしなければなりません。

5.9.2.1 Incomingからパッケージを削除する

以前は、incomingからパッケージを削除することが可能でした。しかし、新しい incomingシステムが導
入されたことにより、これはもはや不可能となっています。4 その代わりに、置き換えたいパッケージより

も高いバージョンのリビジョンの新しいパッケージをアップロードする必要があります。両方のバージョ

ンのパッケージがアーカイブにインストールされますが、一つ前のバージョンはすぐに高いバージョンで

置き換えられるため、実際にはバージョンが高い方だけが不安定版 (unstable)で利用可能になります。し
かし、もしあなたがパッケージをきちんとテストしていれば、パッケージを置き換える必要はそんなに頻

繁には無いはずです。

5.9.3 パッケージをリプレースあるいはリネームする

あなたのパッケージのどれかの開発元のメンテナらが、ソフトウェアをリネームするのを決めた時 (ある
いはパッケージを間違えて名前を付けた時)、以下の二段階のリネーム手続きに従う必要があります。最
初の段階では、debian/controlファイルに新しい名前を反映し、利用しなくなるパッケージ名に対して

Replace、Provides、Conflictsを設定する変更をします (詳細に関しては Debianポリシーマニュアル lを参
照)。注意してほしいのは、利用しなくなるパッケージ名がリネーム後も動作する場合のみ、Providesを

付け加えるべきだということです。一旦パッケージをアップロードがアップロードされてアーカイブに移

動したら、ftp.debian.orgに対してバグを報告してください (パッケージの削除参照)。同時にパッケー
ジのバグを正しく付け替えするのを忘れないでください。

他に、パッケージの作成でミスを犯したので置き換えたいという場合があるかもしれません。これを行う

方法は唯一つ、バージョン番号を上げて新しいバージョンをアップロードすることです。通常、古いバー

ジョンは無効になります。これはソースを含めた各パッケージ部分に適用されることに注意してくださ

い: パッケージの開発元のソース tarball を入れ替えたい場合には、別のバージョンをつけてアップロー
ドする必要があります。よくある例は foo_1.00.orig.tar.gzを foo_1.00+0.orig.tar.gz、あるいは

foo_1.00.orig.tar.bz2で置き換えるというものです。この制約によって、ftpサイト上で各ファイルが
一意の名前を持つことになり、ミラーネットワークをまたがった一貫性を保障するのに役立ちます。

5.9.4 パッケージを放棄する

パッケージをもうメンテナンスできなくなってしまった場合、ほかの人に知らせて、パッケージが放棄

(orphaned)とマークされたのが分かるようにする必要があります。パッケージメンテナを Debian QA Group

<packages@qa.debian.org>に設定し、疑似パッケージ wnppに対してバグ報告を送信しなければなりま

せん。バグ報告は、パッケージが今放棄されていることを示すように O:パッケージ名--短い要約という

タイトルにする必要があります。バグの重要度は通常 (normal)に設定しなければなりません;パッケー
4 Though, if a package still is in the upload queue and hasn't been moved to Incoming yet, it can be removed. (see ftp-masterにアップロー

ドする)

48 第 5章パッケージの取扱い方

https://www.debian.org/doc/debian-policy/

Debian Developer’s Reference,リリース 14.3

ジの重要 (priority)が standardより高い場合には重要 (important)に設定する必要があります。必要だと思
うのならば、メッセージの X-Debbugs-CC:ヘッダのアドレスに debian-devel@lists.debian.orgを入

れてコピーを送ってください (そう、CC:を使わないでください。その理由は、CC:を使うと、メッセージ
の題名がバグ番号を含まないからです)。

パッケージを手放したいが、しばらくの間はメンテナンスを継続できる場合には、代わりに wnppへ RFA:パッ

ケージ名--短い要約 という題名でバグ報告を送信する必要があります。RFA は Request For Adoption

(引き取り依頼)を意味しています。

より詳細な情報はWNPPウェブページにあります。

5.9.5 パッケージを引き取る

新たなメンテナが必要なパッケージの一覧は作業が望まれるパッケージ (WNPP、Work-Needing and Prospec-
tive Packages list)で入手できます。WNPPでリストに挙がっているパッケージのどれかに対するメンテナ
ンスを引き継ぎたい場合には、情報と手続きについては前述のページを確認してください。

It is not OK to simply take over a package without assent of the current maintainer ̶ that would be package
hijacking. You can, of course, contact the current maintainer and ask them for permission to take over the package.

However, when a package has been neglected by the maintainer, you might be able to take over package maintain-
ership by following the package salvaging process as described in Package Salvaging. If you have reason to believe
a maintainer is no longer active at all, see活動的でない、あるいは連絡が取れないメンテナに対応する.

Complaints about maintainers should be brought up on the developers' mailing list. If the discussion doesn't end
with a positive conclusion, and the issue is of a technical nature, consider bringing it to the attention of the technical
committee (see the technical committee web page for more information).

古いパッケージを引き継いだ場合は、おそらくバグ追跡システムでパッケージの公式メンテナとして表示さ

れるようにしたいことでしょう。これは、一旦 Maintainer欄を更新した新しいバージョンをアップロー

ドすれば自動的に行われますが、アップロードが完了してから数時間はかかります。しばらくは新しいバー

ジョンをアップロードする予定が無い場合は、Debianパッケージトラッカーを使ってバグ報告を受け取る
ことができます。しかし、以前のメンテナにしばらくの間はバグ報告が届き続けても問題無いことを確認

してください。

5.9.6 パッケージの再導入

パッケージは、リリースクリティカルのバグやメンテナ不在、不人気あるいは全体的な品質の低さ等によ

り削除されることがよくあります。再導入プロセスはパッケージ化の開始時と似ていますが、あらかじめ

その歴史的経緯を調べておくことにより、落し穴にはまるのをいくらか避けることができます。

まず初めに、パッケージが削除された理由を確認しましょう。この情報はそのパッケージの PTSページの
ニュースから削除の項目か削除ログを探すことにより見つけられます。削除のバグにはそのパッケージが

削除された理由や、そのパッケージの再導入にあたって必要なことがいくらか提示されているでしょう。

パッケージの再導入ではなくどこか他のソフトウェアの一部への乗り替えが最適であるということが提示

されているかもしれません。

以前のメンテナに連絡を取り、パッケージの再導入のために作業していないか、パッケージ共同保守に関

心はないか、必要になったときにパッケージのスポンサーをしてくれないか、等を確認しておくと良いで

しょう。

5.9. パッケージの移動、削除、リネーム、放棄、引き取り、再導入 49

https://www.debian.org/devel/wnpp/
https://www.debian.org/devel/wnpp/
https://www.debian.org/devel/wnpp/
https://www.debian.org/devel/tech-ctte
https://ftp-master.debian.org/#removed

Debian Developer’s Reference,リリース 14.3

新しいパッケージ (新規パッケージ)の導入前に必要なことは全てやりましょう。

利用できる中で適切な最新のパッケージをベースに作業しましょう。これは unstableの最新版かもしれ

ません。また、snapshotアーカイブにはまだ存在するでしょう。

前のメンテナにより利用されていたバージョン管理システムに有用な変更が記録されているかもしれない

ので、確認してみるのは良いことです。以前のパッケージの control ファイルにそのパッケージのバー

ジョン管理システムにリンクしているヘッダが無いか、それがまだ存在するか確認してください。

(testingや stable、oldstableではなく) unstableからパッケージが削除されると、そのパッケージに
関連するバグは全て閉じられます。閉じられたバグを全て (アーカイブされているバグを含めて)確認し、
+rmで終わるバージョンで閉じられていて現在でも有効なものを全て unarchiveおよび reopenしてくださ
い。有効ではなくなっているものは修正されているバージョンがわかればすべて修正済みとしてください。

Package removals from unstable also trigger marking the package as removed in theセキュリティ追跡システム.
Debian members should mark removed issues as unfixed in the security tracker repository and all others should
contact the security team to report reintroduced packages.

5.10 移植作業、そして移植できるようにすること
Debianがサポートするアーキテクチャの数は増え続けています。あなたが移植作業者ではない、あるいは
別のアーキテクチャを使うことが無いという場合であっても、移植性の問題に注意を払うことはメンテナと

してのあなたの義務です。従って、あなたが移植作業者でなくても、この章の大半を読む必要があります。

Porting is the act of building Debian packages for architectures that are different from the original architecture of
the package maintainer's binary package. It is a unique and essential activity. In fact, porters do most of the actual
compiling of Debian packages. For instance, when a maintainer uploads a (portable) source package with binaries
for the i386 architecture, it will be built for each of the other architectures, amounting to 10 more builds.

5.10.1 移植作業者に対して協力的になる

移植作業者は、難解かつ他には無いタスクを抱えています。それは、彼らは膨大な量のパッケージに対処

する必要があるからです。理想を言えば、すべてのソースパッケージは変更を加えないできちんとビルド

できるべきです。残念なことに、その様な場合はほとんどありません。この章は Debianメンテナによって
よくコミットされる「潜在的な問題」のチェックリストを含んでいます̶よく移植作業者を困らせ、彼ら

の作業を不必要に難解にする共通の問題です。

The first and most important thing is to respond quickly to bugs or issues raised by porters. Please treat porters
with courtesy, as if they were in fact co-maintainers of your package (which, in a way, they are). Please be tolerant
of succinct or even unclear bug reports; do your best to hunt down whatever the problem is.

移植作業者が遭遇する問題のほとんどは、何といっても、ソースパッケージ内でのパッケージ作成のバグに

よって引き起こされます。以下は、確認あるいは注意すべき項目のリストです。

1. Make sure that your Build-Depends and Build-Depends-Indep settings in debian/control are set
properly. The best way to validate this is to use the debootstrap package to create an unstable chroot
environment (see debootstrap). Within that chrooted environment, install the build-essential package
and any package dependencies mentioned in Build-Depends and/or Build-Depends-Indep. Finally, try
building your package within that chrooted environment. These steps can be automated by the use of the
pbuilder program, which is provided by the package of the same name (see pbuilder).

50 第 5章パッケージの取扱い方

https://snapshot.debian.org
https://security-team.debian.org/security_tracker.html#removed-packages
https://security-tracker.debian.org/tracker/data/report

Debian Developer’s Reference,リリース 14.3

chrootを正しく設定できない場合は、dpkg-depcheckが手助けになることでしょう (dpkg-depcheck
参照)。

ビルドの依存情報の指定方法については、Debianポリシーマニュアルを参照してください。

2. 意図がある場合以外は、アーキテクチャの値を allまたは any以外に指定しないでください。非常

に多くの場合、メンテナが Debianポリシーマニュアルの指示に従っていません。アーキテクチャを
単一のものに指定する (i386あるいは amd64など)は大抵誤りです。

3. ソースパッケージが正しいことを確かめてください。ソースパッケージが正しく展開されたのを確認
するため、dpkg-source -xpackage.dscを実行してください。そして、ここでは、一からパッケー
ジを dpkg-buildpackageでビルドするのに挑戦してみてください。

4. debian/filesや debian/substvarsを含んだソースパッケージを出していないかを確かめてくだ

さい。これらは、debian/rulesの cleanターゲットによって削除されるべきです。

5. Make sure you don't rely on locally installed or hacked configurations or programs. For instance, you should
never be calling programs in /usr/local/bin or the like. Try not to rely on programs being set up in a
special way. Try building your package on another machine, even if it's the same architecture.

6. 構築中の既にインストールしてあるパッケージに依存しないでください (上記の話の一例です)。もち
ろん、このルールには例外はありますが、そのような場合には手動で一から環境を構築する必要があ

り、パッケージ作成マシンで自動的に構築することはできません。

7. 可能であれば、特定のバージョンのコンパイラに依存しないでください。もし無理であれば、その
制約をビルドの依存関係に反映されているのを確認してください。だとしても異なったアーキテク

チャでは時折異なったバージョンのコンパイラで統一されているので、それでも恐らく問題を引き起

こすことになるでしょう。

8. debian/rulesで、Debianポリシーマニュアルが定めるように、binary-arch及び binary-indep

ターゲットに分かれて含まれていることを確かめてください。両方のターゲットが独立して動作す

るのを確かめてください。つまり、他のターゲットを事前に呼び出さなくても、ターゲットを呼び出

せるのを確かめるということです。これをテストするには、dpkg-buildpackage -Bを実行してく

ださい。

9. When you can't support your package on a particular architecture, you shouldn't use the Architecture field
to reflect that (it's also a pain to maintain correctly). If the package fails to build from source, you can
just let it be and interested people can take a look at the build logs. If the package would actually build,
the trick is to add a Build-Depends on unsupported-architecture [!the-not-supported-arch].
The buildds will not build the package as the build dependencies are not fulfilled on that arch. To pre-
vent building on 32-bits architectures, the architecture-is-64-bit build dependency can be used, as
architecture-is-little-endian can be used to prevent building on big endian systems.

5.10.2 移植作業者のアップロード (porter upload)に関するガイドライン

パッケージが移植作業を行うアーキテクチャで手を入れずに構築できるのであれば、あなたは幸運で作業

は簡単です。この章は、その様な場合に当てはめられます: きちんとアーカイブにインストールされるため
に、どうやってバイナリパッケージを構築・アップロードするかを記述しています。他のアーキテクチャ

でコンパイルできるようにするため、パッケージにパッチを当てる必要がある場合は、実際のところ、ソー

ス NMUを行なうので、代わりにいつ、どうやって NMUを行うかを参照してください。

5.10. 移植作業、そして移植できるようにすること 51

https://www.debian.org/doc/debian-policy/
https://www.debian.org/doc/debian-policy/

Debian Developer’s Reference,リリース 14.3

移植作業者のアップロード (porter upload)は、ソースに何も変更を加えません。ソースパッケージ中のファ
イルには触る必要はありません。これは debian/changelogを含みます。

dpkg-buildpackage を dpkg-buildpackage -B -mporter-email として起動してください。もちろん、
porter-email にはあなたのメールアドレスを設定します。これは debian/rules の binary-arch を使っ

てパッケージのバイナリ依存部分のみのビルドを行います。

移植作業のために Debianマシン上で作業をしていて、アーカイブに入れてもらうためにアップロードする
パッケージにローカルでサインする必要がある場合は、.changesに対して debsignを手軽に実行するの

もできますし、dpkg-sigのリモート署名モードを使うこともできます。

5.10.2.1 再コンパイル、あるいは binary-only NMU

時折、最初の移植作業者のアップロード作業は困難なものになります。パッケージが構築された環境があ

まり良くないからです (古すぎる、使われていないライブラリがある、コンパイラの問題、などなど…)。そ
の場合には、更新した環境で再コンパイルする必要があるでしょう。しかし、この場合にはバージョンを

上げる必要があり、古いおかしなパッケージは Debianアーカイブ中で入れ替えられることになります (現
在利用可能なものよりバージョン番号が大きくない場合、dakは新しいパッケージのインストールを拒否

します)。

binary-only NMUがパッケージをインストール不可能にしてしまっていないことを確認する必要がありま
す。ソースパッケージが、dpkgの substitution変数 $(Source-Version)を使って内部依存関係を生成して

いるアーキテクチャ依存パッケージとアーキテクチャ非依存パッケージを生成した場合に起こる可能性が

あります。

changelogの変更が必要かどうかに関わらず、これらは binary-only NMUと呼ばれます̶この場合には、
他の全アーキテクチャで古すぎるかどうかや再コンパイルが必要かなどを考える必要はありません。

このような再コンパイルは、特別な「magic」バージョン番号を付けるのを必要とするので、アーカイブの
メンテナンスツールは、これを理解してくれます。新しい Debianバージョンで、対応するソースアップ
デートが無くても、です。これを間違えた場合、アーカイブメンテナは (対応するソースコードが欠落して
いるので)アップロードを拒否します。

再コンパイルのみの NMUへの「magic」は、b番号という形式に従った、パッケージのバージョン番号に

対するサフィックスを追加することで引き起こされます。例えば、再コンパイル対象の最新バージョンが

2.9-3の場合、バイナリのみの NMUは 2.9-3+b1というバージョンになる必要があります。最新のバー

ジョンが 3.4+b1 (つまり、ネイティブパッケージで、前回が再コンパイルの NMU)の場合、バイナリのみ
の NMUは 3.4+b2というバージョン番号にならねばいけません。2

最初の移植作業者のアップロード (porter upload)と同様に、パッケージのアーキテクチャ依存部分をビル
ドするための dpkg-buildpackageの正しい実行の仕方は dpkg-buildpackage -Bです。

5.10.2.2 あなたが移植作業者の場合、source NMUを行う時は何時か

移植作業者は、通常は非移植作業者同様に Non-Maintainer Upload (NMU)にあるガイドラインに沿ってソー
ス NMUを行います。しかし、移植作業者のソース NMUに対する待ち時間は非移植作業者より小さくな
ります。これは、移植作業は大量のパッケージに対応する必要があるからです。さらに、状況はパッケー

ジがアップロードされるディストリビューションに依って変わります。これは、アーキテクチャが次の安

2 過去においては、再コンパイルのみの状態を意味するために、このような NMUはリビジョンの Debian部分の三つ目の番号を
使っていました。しかし、この記法はネイティブパッケージの場合に曖昧で、同一パッケージでの再コンパイルのみの NMUと、ソー
ス NMUと、セキュリティ NMUの正しい順序が付けられなかったため、この新しい記法で置き換えられました。

52 第 5章パッケージの取扱い方

Debian Developer’s Reference,リリース 14.3

定版リリースに含められるかどうかによっても変わります。リリースマネージャはどのアーキテクチャが

候補なのかを決定してアナウンスします。

あなたが不安定版 (unstable)へ NMUを行う移植作業者の場合、移植作業についての上記のガイドライ
ン、そして 2つの相違点に従う必要があります。まず、適切な待ち時間です̶バグが BTSへ投稿されて
から NMUを行って OKになるまでの間̶移植作業者が不安定版 (unstable)ディストリビューションに
対して行う場合は 7日間になります。問題が致命的で移植作業に困難を強いるような場合には、この期間
は短くできます (注意してください。この何れもがポリシーではなく、単にガイドラインに沿って相互に了
解されているだけです)。安定版 (stable)やテスト版 (testing)へのアップロードについては、まず適
切なリリースチームと調整をしてください。

次に、ソース NMUを行う移植作業者は BTSへ登録したバグの重要度が seriousかそれ以上であること

を確認してください。これは単一のソースパッケージが、すべての Debianでサポートされているアーキ
テクチャでコンパイルされたことをリリース時に保証します。数多くのライセンスに従うため、すべての

アーキテクチャについて、単一のバージョンのバイナリパッケージとソースパッケージを持つことがとて

も重要です。

移植作業者は、現在のバージョンのコンパイル環境やカーネル、libcにあるバグのために作られた単なる
力業のパッチを極力回避すべきです。この様なでっち上げの代物があるのは、仕方がないことが時折あり

ます。コンパイラのバグやその他の為にでっち上げを行う必要がある場合には、#ifdefで作業したものが

動作することを確認してください。また、力業についてドキュメントに載せてください。一旦外部の問題

が修正されたら、それを削除するのを皆が知ることができます。

移植作業者は、待ち期間の間、作業結果を置いておける非公式の置き場所を持つこともあります。移植版

を動作させている人が、待ち期間の間であっても、これによって移植作業者による作業の恩恵を受けられ

るようになります。もちろん、この様な場所は、公式な恩恵や状況の確認を受けることはできませんので、

利用者は注意してください。

5.10.3 移植用のインフラと自動化

パッケージの自動移植に役立つインフラストラクチャと複数のツールがあります。この章には、この自動

化とこれらのツールへの移植の概要が含まれています。全体の情報に付いてはパッケージのドキュメント

かリファレンスを参照してください。

5.10.3.1 メーリングリストとウェブページ

各移植版についての状況を含んだウェブページは https://www.debian.org/ports/から参照できます。

Debianの各移植版はメーリングリストを持っています。移植作業のメーリングリストは https://lists.debian.
org/ports.htmlで見ることができます。これらのリストは移植作業者の作業の調整や移植版のユーザと移植
作業者をつなぐために使われています。

5.10.3.2 移植用ツール

移植用のツールの説明をいくつか移植用ツールで見ることができます。

5.10. 移植作業、そして移植できるようにすること 53

https://www.debian.org/ports/
https://lists.debian.org/ports.html
https://lists.debian.org/ports.html

Debian Developer’s Reference,リリース 14.3

5.10.3.3 wanna-build

The wanna-build system is used as a distributed, client-server build distribution system. It is usually used in
conjunction with build daemons running the buildd program. Build daemons are slave hosts, which contact
the central wanna-build system to receive a list of packages that need to be built.

wanna-build is not yet available as a package; however, all Debian porting efforts are using it for automated pack-
age building. The tool used to do the actual package builds, sbuild, is available as a package; see its description
in sbuild. Please note that the packaged version is not the same as the one used on build daemons, but it is close
enough to reproduce problems.

Most of the data produced by wanna-build that is generally useful to porters is available on the web at https://
buildd.debian.org/. This data includes nightly updated statistics, queueing information and logs for build attempts.

我々はこのシステムを極めて誇りに思っています。何故ならば、様々な利用方法の可能性があるからです。

独立した開発グループは、実際に一般的な用途に合うかどうか分からない異なった別アプローチの Debian
にシステムを使うことができます (例えば、gccの配列境界チェック付きでビルドした Debianなど)。そし
て、Debianがディストリビューション全体を素早く再コンパイルできるようにもなります。

builddの担当であるwanna-buildチームには、debian-wb-team@lists.debian.orgで連絡が取れます。誰
(wanna-buildチーム、リリースチーム)に連絡を取るのか、どうやって (メール、BTS)連絡するのかを決め
るには、https://lists.debian.org/debian-project/2009/03/msg00096.htmlを参照してください。

binNMUや give-back (ビルド失敗後のやり直し)を依頼する時には、https://release.debian.org/wanna-build.txt
で記述されている形式を使ってください。

5.10.4 あなたのパッケージが移植可能なものではない場合

いくつかのパッケージでは、Debianでサポートされているアーキテクチャのうちの幾つかで、構築や動作
に問題を抱えており、全く移植できない、あるいは十分な時間内では移植ができないものがあります。例

としては、SVGAに特化したパッケージ (i386と amd64のみで利用可能)や、すべてのアーキテクチャで
はサポートされていないようなハードウェア固有の機能があります。

壊れたパッケージがアーカイブにアップロードされたり builddの時間が無駄に費やされたりするのを防ぐ
ため、幾つかしなければならないことがあります:

• まず、サポートできないアーキテクチャ上ではパッケージがビルドに失敗するのを確認しておく必要
があります。これを行うには幾つかやり方があります。お勧めの方法は構築時に機能をテストする

小さなテストスイートを用意して、動かない場合に失敗するようにすることです。これは、全ての

アーキテクチャ上で、壊れたものをアップロードするのを防ぎ、必要な機能が動作するようになれば

パッケージがビルドできるようになる、良い考えです。

さらに、サポートしているアーキテクチャ一覧が一定量であると信ずるのであれば、debian/control

内で anyからサポートしているアーキテクチャの一覧に変更するべきです。この方法であれば、ビ

ルドが同様に失敗するようになるのに加え、実際に試すことなく人間である読み手にサポートしてい

るアーキテクチャが分かるようにできます。

• autobuilderが必要もなくパッケージをビルドしようとしないように、wanna-buildスクリプトが使

うリストである Packages-arch-specific に追加しておく必要があります。現在のバージョンは

https://wiki.debian.org/PackagesArchSpecificから入手できます: 変更依頼をする相手はファイルの一番
上を参照してください。

54 第 5章パッケージの取扱い方

https://buildd.debian.org/
https://buildd.debian.org/
https://lists.debian.org/debian-project/2009/03/msg00096.html
https://release.debian.org/wanna-build.txt
https://wiki.debian.org/PackagesArchSpecific

Debian Developer’s Reference,リリース 14.3

Please note that it is insufficient to only add your package to Packages-arch-specific without making it fail to
build on unsupported architectures: A porter or any other person trying to build your package might accidentally
upload it without noticing it doesn't work. If in the past some binary packages were uploaded on unsupported
architectures, request their removal by filing a bug against ftp.debian.org.

5.10.5 non-freeのパッケージを auto-build可能であるとマークする

By default packages from the non-free and non-free-firmware sections are not built by the autobuilder net-
work (mostly because the license of the packages could disapprove). To enable a package to be built, you need to
perform the following steps:

1. 法的に許可されているか、技術的にパッケージが auto-build可能かどうかを確認する;

2. debian/controlのヘッダ部分に XS-Autobuild: yesを追加する;

3. メールを non-free@buildd.debian.orgに送り、何故パッケージが合法的、かつ技術的に auto-build
できるものなのかを説明する

5.11 Non-Maintainer Upload (NMU)
すべてのパッケージには最低一人のメンテナがいます。通常、この人達がパッケージに対して作業をし、新

しいバージョンをアップロードします。時折、他の開発者らが新しいバージョンをアップロードできると

便利な場合があります。例えば、彼らがメンテナンスしていないパッケージにあるバグを修正したいが、メ

ンテナが問題に対応するのには助けが必要な場合です。このようなアップロードは Non-Maintainer Upload
(NMU)と呼ばれます。

5.11.1 いつ、どうやって NMUを行うか

NMUを行う前に、以下の質問について考えてください:

• Have you geared the NMU towards helping the maintainer? As there might be disagreement on the notion of
whether the maintainer actually needs help or not, the DELAYED queue exists to give time to the maintainer
to react and has the beneficial side-effect of allowing for independent reviews of the NMU diff.

• Does your NMU really fix bugs? ("Bugs" means any kind of bugs, e.g. wishlist bugs for packaging a new
upstream version, but care should be taken to minimize the impact to the maintainer.) Using NMUs to make
changes that are likely to be non-consensual is discouraged.

• As more specific examples, the following changes are generally considered acceptable, unless there are
good reasons for not following those practices in a particular package: using the latest released debhelper
compatibility level; using dh; using 3.0 (quilt); using lintian-brush.

• メンテナに十分な時間を与えましたか? BTSにバグが報告されたのは何時ですか? 一、二週間忙しい
ことはあり得ないことでは無いです。そのバグはすぐに修正しなければならないほど重大ですか? そ
れとも、あと数日待てるものですか?

• その変更にどれくらい自信がありますか? ヒポクラテスの誓いを思い出してください: 「何よりも、
害を及ぼすことなかれ」動かないパッチを当てるよりもパッケージの重大なバグをそのままオープ

ンな状態にしておく方が良いですし、パッチによってバグを解決するのではなく隠してしまうかもし

れません。自分が 100%何をしたのか分かっていないのであれば、他の人からアドバイスをもらうの

5.11. Non-Maintainer Upload (NMU) 55

Debian Developer’s Reference,リリース 14.3

も良い考えでしょう。NMUで何かを壊したのであれば、多くの人がとても不幸になるであろうこと
を覚えておいてください。

• 少なくとも BTSで、NMUするのを明確に表明しましたか? 何も反応が得られなかった場合、他の手
段 (プライベートなメール、IRC)でメンテナに連絡をとるのも良い考えです。

• メンテナがいつも活動的で応答してくれる場合、彼に連絡を取ろうとしましたか? 大概の場合、メン
テナ自身が問題に対応して、あなたのパッチをレビューする機会が与えられる方が好ましいと思われ

ます。これは、NMUをする人が見落としているだろう潜在的な問題にメンテナは気付くことができ
るからです。大抵、メンテナが自分でアップロードする機会が与えられる方が、皆の時間を使うより

も良いやり方です。

NMUをする際には、まず NMUをする意図を明確にしておかねばなりません。それから、BTSへ現在の
パッケージと提案する NMUとの差分をパッチとして送付する必要があります。devscriptsパッケージ

にある nmudiffスクリプトが役に立つでしょう。

While preparing the patch, you had better be aware of any package-specific practices that the maintainer might be
using. Taking them into account reduces the burden of integrating your changes into the normal package workflow
and thus increases the chances that integration will happen. A good place to look for possible package-specific
practices is debian/README.source.

そうするべき十二分な理由が無い限り、メンテナに対応する時間を与えるべきです (例えば DELAYEDキュー

にアップロードすることによってこれを行います)。以下が delayedキューを使う際のお勧めの値です:

• 7日以上経っているリリースクリティカルバグのみを修正するアップロードで、バグに対するメンテ
ナの活動が 7日間見られなく、修正が行われている形跡が無い: 0日

• 7日以上経っているリリースクリティカルバグのみを修正するアップロード: 2日

• リリースクリティカルバグや重要なバグの修正のみのアップロード: 5日

• Other NMUs: 15 days

この値は例に過ぎません。セキュリティ問題を修正するアップロードや、移行を阻む些細なバグを修正す

るなど、いくつかのケースでは修正されたパッケージが不安定版 (unstable)にすぐ入るようになるのは
望ましいことです。

時々、リリースマネージャが特定のバグに対して短い delay日数の NMUを許可を認めることがあります
(7日より古いリリースクリティカルバグなど)。また、一部のメンテナは Low Threshold NMU listに自身
を挙げており、遅延なしの NMUアップロードを許可しています。しかしそのような場合であっても、特
にパッチが BTSで以前手に入らなかったり、メンテナが大抵アクティブであるのを知っている場合など、
アップロードの前にメンテナに対して数日与えるのは良い考えです。

NMUアップロード後、あなたは自分が導入したであろう問題に責任を持つことになります。パッケージを
見張らなければなりません (これを行うには PTS上のパッケージを購読するのが良い方法です)。

これは、軽率な NMUを行うための許可証ではありません。明らかにメンテナがアクティブで時期を逃さ
ずパッチについて対応している場合や、このドキュメントに書かれている推奨を無視している場合など、

あなたによるアップロードはメンテナと衝突を起こすでしょう。NMUのメリットについて、自分が行った
ことの賢明さを常に弁護できるようにしておく必要があります。

56 第 5章パッケージの取扱い方

https://www.debian.org/doc/debian-policy/ch-source.html#s-readmesource
https://wiki.debian.org/LowThresholdNmu

Debian Developer’s Reference,リリース 14.3

5.11.2 NMUと debian/changelog

Just like any other (source) upload, NMUs must add an entry to debian/changelog, telling what has changed
with this upload. The first line of this entry must explicitly mention that this upload is an NMU, e.g.:

* Non-maintainer upload.

NMUのバージョンのつけ方は、ネイティブなパッケージとネイティブではないパッケージでは異なります。

パッケージがネイティブパッケージの場合 (バージョン番号に Debianリビジョンが付かない)、バージョン
はメンテナの最後のアップロードのバージョン + +nmuX となり、X は 1から始まる数字になります。最後

のアップロードが同様に NMUの場合は、数字を増やします。例えば、現在のバージョンが 1.5だとする

と、NMUはバージョンが 1.5+nmu1になります。

パッケージがネイティブパッケージではない場合は、バージョン番号の Debianリビジョン部分 (最後のハ
イフン以下の部分)にマイナーバージョン番号を追加します。例えば、現在のバージョンが 1.5-2であれ

ば、NMUは 1.5-2.1というバージョンになります。開発元のバージョンが新しくなったものが NMUで
パッケージになった場合は、Debianリビジョンは 0に設定されます。例えば 1.6-0.1です。

どちらの場合でも、最後のアップロードも NMUだった場合には数字が増えます。例えば、現在のバージョ
ンが 1.5+nmu3 (既に NMUされたネイティブパッケージ)の場合、NMUは 1.5+nmu4というバージョンに

なります。

特別なバージョン付け方法が必要とされるのは、メンテナの作業を混乱させるのを避けるためです。何故

ならば、Debianリビジョンのために整数を使っていると、NMUの際に既に準備されていたメンテナによ
るアップロードや、さらには ftp NEW queueにあるパッケージともぶつかる可能性があります。これには、
アーカイブのパッケージが公式メンテナによるものではない、と視覚的に明らかにする利点もあります。

パッケージをテスト版や安定版にアップロードする場合、バージョン番号を「分岐」する必要が時々あり

ます。これは例えばセキュリティアップロードが該当します。そのため、+debXuY 形式のバージョン番
号を使うようにしてください。X はメジャーリリース番号で Y は 1から始まるカウンターです。例えば、

trixie (Debian 13)が安定版の間は安定版バージョン 1.5-3のパッケージへのセキュリティNMUならバー
ジョン 1.5-3+deb13u1となりますが、forkyへのセキュリティ NMUではバージョン 1.5-3+deb14u1と

なります。

5.11.3 DELAYED/キューを使う

NMUの許可を求めた後で待っているのは効率的ではありません。NMUした人が作業にもどるために頭を
切り替えるのに手間がかかるからです。DELAYEDキュー (遅延アップロード参照)は、開発者が NMUをす
るのに必要な作業を同時にできるようになります。例えば、メンテナに対して更新したパッケージを 7日
後にアップロードするのを伝えるのではなく、パッケージを DELAYED/7にアップロードしてメンテナに対

して対応するのに 7日間あることを伝えるべきです。この間、メンテナはもっとアップロードを遅らせる
かアップロードをキャンセルするかを尋ねることができます。

You can cancel your upload using dcut. In case you uploaded foo_1.2-1.1_all.changes to a DELAYED queue,
you can run dcut cancel foo_1.2-1.1_all.changes to cancel your upload. The .changes file does not need
to be present locally as you instruct dcut to upload a command file removing a remote filename. The .changes

file name is the same that you used when uploading.

DELAYEDキューは、無用のプレッシャーをメンテナに与えるために使われるべきではありません。特に、

メンテナはアップロードを自身ではキャンセルできないので、delayが完了する前にアップロードをキャン

5.11. Non-Maintainer Upload (NMU) 57

Debian Developer’s Reference,リリース 14.3

セルあるいは遅らせることができるのはあなただ、という点が重要です。

DELAYEDを使った NMUを行って delayが完了する前にメンテナがパッケージを更新した場合には、アーカ
イブに既により新しいバージョンがあるので、あなたのアップロードは拒否されます。理想的なのは、メ

ンテナがそのアップロードであなたが提案した変更 (あるいは少なくとも対応した問題の解決方法)を含め
るのを取り仕切ることです。

5.11.4 メンテナの視点から見た NMU

誰かがあなたのパッケージを NMUした場合、これは彼らがパッケージを良い形に保つのを助けたいと思っ
ているということです。これによって、ユーザへ修正したパッケージをより早く届けます。NMUした人
に、パッケージの副メンテナになることを尋ねるのを考えてみるのも良いでしょう。パッケージに対して

NMUを受け取るのは悪いことではありません。それは、単にそのパッケージが他の人が作業する価値があ
るという意味です。

NMUを承認するには、変更と changelogのエントリを次のメンテナアップロードに含めます。バグは BTS
で closeされたままになりますが、パッケージのメンテナバージョンに影響していると表示されます。

Note that if you ever need to revert a NMU that packages a new upstream version, it is recommended
to use a fake upstream version like CURRENT+reallyFORMER until one can upload the latest version
again. More information can be found in https://www.debian.org/doc/debian-policy/ch-controlfields.html#
epochs-should-be-used-sparingly.

Note that easiest way to both check if your package has been NMUed, and also automatically download and
commit the changes into a git-buildpackage maintained git repository is to run gbp import-dsc --verbose

--pristine-tar apt:<package>/sid. This example command assumes you are working on the debian/

latest branch preparing the next upload to Debian unstable, and it assumes your apt has the deb-src line active
for Debian unstable.

5.11.5 ソース NMU vsバイナリのみの NMU (binNMU)

NMUのフルネームはソース NMU です。もう一つ別の種類があって、バイナリのみの NMU (binary-only
NMU)あるいは binNMU と名付けられています。binNMUも、パッケージメンテナ以外の誰かによるパッ
ケージのアップロードです。しかし、これはバイナリのみのアップロードです。

ライブラリ (や他の依存関係)が更新された時、それを使っているパッケージを再ビルドする必要があるか
もしれません。ソースへの変更は必要ないので、同じソースパッケージが利用されます。

binNMUは、通常 wanna-buildによって buildd上で引き起こされます。debian/changelogにエントリが

追加され、なぜアップロードが必要だったのか、という説明と再コンパイル、あるいは binary-only NMU
で記述されているようにバージョン番号を増やします。このエントリは、その次のアップロードに含める

べきではありません。

builddは、アーカイブするために、バイナリのみのアップロードとして、そのアーキテクチャに対してパッ
ケージをアップロードします。厳密に言えば、これは binNMUです。しかし、これは通常 NMUとは呼ば
れず、debian/changelogにエントリを追加しません。

58 第 5章パッケージの取扱い方

https://www.debian.org/doc/debian-policy/ch-controlfields.html#epochs-should-be-used-sparingly
https://www.debian.org/doc/debian-policy/ch-controlfields.html#epochs-should-be-used-sparingly

Debian Developer’s Reference,リリース 14.3

5.11.6 NMUと QAアップロード

NMUs are uploads of packages by somebody other than their assigned maintainer. There is another type of upload
where the uploaded package is not yours: QA uploads. QA uploads are uploads of orphaned packages.

QAアップロードは、ほとんど通常のメンテナによるアップロードと同じです: 些細な問題であっても、な
んでも修正します。バージョン番号の付け方は通常のものですし、delayアップロードをする必要もあり
ません。違いは、パッケージのメンテナあるいはアップローダとして記載されていない点です。また、QA
アップロードの changelogのエントリは以下のように最初の一行が特別になっています:

* QA upload.

あなたが NMU をしたいと思い、かつ、メンテナが活動的ではない場合、パッケージが放棄されてない
かどうかを確認するのが賢明です (この情報はパッケージ追跡システム (PTS)のページで表示されていま
す)。放棄されたパッケージに対して最初の QAアップロードを行うときは、メンテナは Debian QA Group

<packages@qa.debian.org>に設定する必要があります。まだ QAアップロードがされていない放棄され
たパッケージには、以前のメンテナが設定されています。この一覧は https://qa.debian.org/orphaned.htmlで
手に入ります。

Instead of doing a QA upload, you can also consider adopting the package by making yourself the maintainer. You
don't need permission from anybody to adopt an orphaned package; you can just set yourself as maintainer and
upload the new version (seeパッケージを引き取る).

5.11.7 NMUとチームアップロード

Sometimes you are fixing and/or updating a package because you are member of a packaging team (which uses a
mailing list as Maintainer or Uploader; see共同メンテナンス) but you don't want to add yourself to Uploaders
because you do not plan to contribute regularly to this specific package. If it conforms with your team's policy, you
can perform a normal upload without being listed directly as Maintainer or Uploader. In that case, you should
start your changelog entry with the following line:

* Team upload.

5.12 Package Salvaging
Package salvaging is the process by which one attempts to save a package that, while not officially orphaned,
appears poorly maintained or completely unmaintained. This is a weaker and faster procedure than orphaning a
package officially through the powers of the MIA team. Salvaging a package is not meant to replace MIA handling,
and differs in that it does not imply anything about the overall activity of a maintainer. Instead, it handles a package
maintainership transition for a single package only, leaving any other package or Debian membership or upload
rights (when applicable) untouched.

Note that the process is only intended for actively taking over maintainership. Do not start a package salvaging
process when you do not intend to maintain the package for a prolonged time. If you only want to fix certain things,
but not take over the package, you must use the NMU process, even if the package would be eligible for salvaging.
The NMU process is explained in Non-Maintainer Upload (NMU).

Another important thing to remember: It is not acceptable to hijack others' packages. If followed, this salvaging
process will help you to ensure that your endeavour is not a hijack but a (legal) salvaging procedure, and you can

5.12. Package Salvaging 59

https://qa.debian.org/orphaned.html

Debian Developer’s Reference,リリース 14.3

counter any allegations of hijacking with a reference to this process. Thanks to this process, new contributors
should no longer be afraid to take over packages that have been neglected or entirely forgotten.

The process is split into two phases: In the first phase you determine whether the package in question is eligible for
the salvaging process. Only when the eligibility has been determined you may enter the second phase, the actual
package salvaging.

For additional information, rationales and FAQs on package salvaging, please visit the Salvaging Packages page
on the Debian wiki.

5.12.1 When a package is eligible for package salvaging

A package becomes eligible for salvaging when it has been neglected by the current maintainer. To determine that
a package has really been neglected by the maintainer, the following indicators give a rough idea what to look for:

• NMUs, especially if there has been more than one NMU in a row.

• Bugs filed against the package do not have answers from the maintainer.

• Upstream has released several versions, but despite there being a bug entry asking for it, it has not been
packaged.

• There are QA issues with the package.

You will have to use your judgement as to whether a given combination factors constitutes neglect; in case the
maintainer disagrees they have only to say so (see below). If you're not sure about your judgement or simply want
to be on the safe side, there is a more precise (and conservative) set of conditions in the Package Salvaging wiki
page. These conditions represent a current Debian consensus on salvaging criteria. In any case you should explain
your reasons for thinking the package is neglected when you file an Intent to Salvage bug later.

5.12.2 How to salvage a package

If and only if a package has been determined to be eligible for package salvaging, any prospective maintainer may
start the following package salvaging procedure.

1. Open a bug with the severity "important" against the package in question, expressing the intent to take over
maintainership of the package. For this, the title of the bug should start with ITS: package-name3. You
may alternatively offer to only take co-maintenance of the package. When you file the bug, you must inform
all maintainers, uploaders and if applicable the packaging team explicitly by adding them to X-Debbugs-CC.
Additionally, if the maintainer(s) seem(s) to be generally inactive, please inform the MIA team by adding
mia@qa.debian.org to X-Debbugs-CC as well. As well as the explicit expression of the intent to salvage,
please also take the time to document your assessment of the eligibility in the bug report, for example by
listing the criteria you've applied and adding some data to make it easier for others to assess the situation.

2. In this step you need to wait in case any objections to the salvaging are raised; the maintainer, any current
uploader or any member of the associated packaging team of the package in question may object publicly in
response to the bug you've filed within 21 days, and this terminates the salvaging process.

The current maintainers may also agree to your intent to salvage by filing a (signed) public response to the
the bug. They might propose that you become a co-maintainer instead of the sole maintainer. On team

3 ITS is shorthand for "Intend to Salvage"

60 第 5章パッケージの取扱い方

https://wiki.debian.org/PackageSalvaging
https://wiki.debian.org/PackageSalvaging

Debian Developer’s Reference,リリース 14.3

maintained packages, a member of the associated team can accept your salvaging proposal by sending out
a signed agreement notice to the ITS bug, alternatively inviting you to become a new co-maintainer of the
package. The team may require you to keep the package under the team's umbrella, but then may ask or
invite you to join the team. In any of these cases where you have received the OK to proceed, you can upload
the new package immediately as the new (co-)maintainer, without the need to utilise the DELAYED queue as
described in the next step.

3. After the 21 days delay, if no answer has been sent to the bug from the maintainer, one of the uploaders or
team, you may upload the new release of the package into the DELAYED queue with a minimum delay of
seven days. You should close the salvage bug in the changelog and you must also send an nmudiff to the
bug ensuring that copies are sent to the maintainer and any uploaders (including teams) of the package by
CC'ing them in the mail to the BTS.

During the waiting time of the DELAYED queue, the maintainer can accept the salvaging, do an upload them-
selves or (ask to) cancel the upload. The latter two of these will also stop the salvaging process, but the
maintainer must reply to the salvaging bug with more information about their action.

5.13 共同メンテナンス
共同メンテナンス (collaborative maintenance)は、Debianパッケージのメンテナンス責任を数人でシェアす
ることを指す用語です。この共同作業は、通常はより上質で短いバグ修正時間をもたらすので、大抵の場

合は常に良い考えです。優先度が標準 (standard)あるいは基本セット (base)の一部であるパッケージは、
共同メンテナ (co-maintainer)を持つことを強くお勧めします。

大抵の場合、主メンテナに加えて一人か二人の共同メンテナが居ます。主メンテナは debian/controlファ

イルの Maintainer 欄に名前が記載されている人です。共同メンテナは他のすべてのメンテナで、通常

debian/controlファイルの Uploadersに記載されています。

もっとも基本的なやり方では、新しい副メンテナの追加は大変簡単です:

• Set up the co-maintainer with access to the sources you build the package from. Generally this implies you are
using a network-capable version control system, such as Git. Salsa (see salsa.debian.org: Git repositories
and collaborative development platform) provides Git repositories, amongst other collaborative tools.

• 共同メンテナの正確なメンテナ名とアドレスを debian/controlファイルの最初の段落の Uploaders

欄に追加します。

Uploaders: John Buzz <jbuzz@debian.org>, Adam Rex <arex@debian.org>

• PTS (Debianパッケージトラッカー)を使う場合、共同メンテナは適切なソースパッケージの購読を
する必要があります。

共同メンテナンスのもう一つの形態はチームメンテナンスです。これは、複数のパッケージを同じ開発者

グループでメンテナンスする場合にお勧めです。その場合、各パッケージの Maintainer欄と Uploaders

欄は注意して扱わねばいけません。以下の二つの案からいずれかを選ぶのがお勧めです:

1. パッケージの主に担当をするチームメンバーを Maintainer 欄に追加します。Uploaders 欄には、

メーリングリストのアドレスとパッケージの面倒をみるチームメンバーを追加します。

2. Put the mailing list address in the Maintainer field. In the Uploaders field, put the team members who
care for the package. In this case, you must make sure the mailing list accepts bug reports without any human

5.13. 共同メンテナンス 61

Debian Developer’s Reference,リリース 14.3

interaction (like moderation for non-subscribers).

どのような場合でも、すべてのチームメンバーを Uploaders欄に入れるのは良くない考えです。これは、

Developer's Package Overviewの一覧 (Developer's packages overview 参照)を実際には対応していないパッ
ケージで散らかしてしまい、偽りの良いメンテナンス状態を作り出します。同じ理由から、パッケージを

一回アップロードするのであれば、「チームアップロード (Team Upload)」ができるので、チームメンバー
は Uploaders 欄へ自分を追加する必要はありません (NMU とチームアップロード 参照)。逆にいえば、
Maintainer欄にメーリングリストのアドレスのみで Uploaders欄に誰も追加していないままにしておく

のは良くない考えです。

5.14 テスト版ディストリビューション

5.14.1 基本

パッケージは通常、不安定版 (unstable)におけるテスト版への移行基準を満たした後でテスト版 (testing)
ディストリビューションへとインストールされます。

これらは、すべてのアーキテクチャ上で同期していなければならず、インストールできなくなるような依

存関係を持ってはいけません。また、テスト版 (testing)にインストールされる際に既知のリリースク

リティカルバグを持っていない必要があります。このようにして、テスト版 (testing)は常にリリース

候補に近いものである必要があります。詳細は以下を参照してください。

5.14.2 不安定版からの更新

テスト版 (testing) ディストリビューションを更新するスクリプトは、日に二回、更新されたパッケー
ジのインストール直後に動作します。これらのスクリプトは britney と呼ばれます。これは、テスト版

(testing)ディストリビューションに対して Packagesファイルを生成しますが、不整合を避けてバグが

無いパッケージのみを利用しようとする気の利いたやり方で行います。

不安定版 (unstable)からのパッケージの取り込みは以下の条件です:

• The package must have been available in unstable for a certain number of days, see Selecting the upload
urgency. Please note that the urgency is sticky, meaning that the highest urgency uploaded since the previous
testing transition is taken into account;

• 新たなリリースクリティカルバグを持っていないこと (不安定版 (unstable)で利用可能なバージョ
ンに影響する RCバグであって、テスト版 (testing)にあるバージョンに影響するものではない);

• あらかじめ unstableでビルドされた際に、全アーキテクチャで利用可能になっていなくてはいけま

せん。この情報をチェックするのに dak lsユーティリティに興味を持つかもしれません;

• 既にテスト版 (testing)で利用可能になっているパッケージの依存関係を壊さないこと;

• パッケージが依存するものは、テスト版 (testing)で利用可能なものか、テスト版 (testing)に同

時に受け入れられるものでなくてはいけない (そして、それらは必要な条件をすべて満たしていれば、
テスト版 (testing))に入る);

• プロジェクトの状況。つまり、テスト版 (testing)ディストリビューションのフリーズ中は、自動的
な移行がオフになります。

62 第 5章パッケージの取扱い方

Debian Developer’s Reference,リリース 14.3

パッケージがテスト版 (testing)に入る処理がされるかどうかは、テスト版ディストリビューションのウェブ
ページのテスト版 (testing)スクリプトの出力を参照するか、devscriptsパッケージ中の grep-excuses

プログラムを使ってください。このユーティリティは、パッケージがテスト版 (testing)への進行の通

知をし続けるのに、crontab 5で手軽に使うことができます。

update_excusesは、なぜパッケージが拒否されたのか正確な理由を必ずしも表示しません。自分自身で

何がパッケージが含まれるのを妨げているのか、探す必要があるかもしれません。テスト版のウェブペー

ジが、そのような問題を引き起こす良くある問題についての情報を与えてくれるでしょう。

時折、相互依存関係の組み合わせが非常に難解なのでスクリプトが解決できないことがあるため、パッケー

ジがテスト版 (testing)に決して入らないことがあります。詳細は下記を参照してください。

Some further dependency analysis is shown on https://release.debian.org/migration/ ̶ but be warned: this page
also shows build dependencies that are not considered by britney.

5.14.2.1 時代遅れ (Out-of-date)

For the testing migration script, outdated means: There are different versions in unstable for the release ar-
chitectures (except for the architectures in outofsync_arches; outofsync_arches is a list of architectures that don't
keep up (in britney.py), but currently, it's empty). Outdated has nothing whatsoever to do with the architectures
this package has in testing.

以下の例を考えてみましょう:

alpha arm

テスト版 1 -
不安定版 1 2

The package is out of date on alpha in unstable, and will not go to testing. Removing the package would not
help at all; the package is still out of date on alpha, and will not propagate to testing.

ですが、もしも ftp-masterが不安定版 (unstable)のパッケージ (ここでは armの)を削除した場合:

alpha arm hurd-i386

テスト版 1 1 -
不安定版 2 - 1

この場合、パッケージは不安定版 (unstable)ですべてのリリースアーキテクチャで最新になります (それ
から、もう一つの hurd-i386は、リリースアーキテクチャではないので問題になりません)。

時折、すべてのアーキテクチャでまだビルドされていていないパッケージを入れられるか、という質問が

でてきます: いいえ。単純にいいえ、です (glibcなどをメンテしている場合を除きます)。

5.14. テスト版ディストリビューション 63

https://www.debian.org/devel/testing
https://www.debian.org/devel/testing
https://www.debian.org/devel/testing
https://www.debian.org/devel/testing
https://release.debian.org/migration/

Debian Developer’s Reference,リリース 14.3

5.14.2.2 テスト版からの削除

時折、パッケージは他のパッケージがテスト版へ入るために削除されます: これは、他のパッケージが他の
すべての面で準備ができている場合にテスト版に入るようにする場合のみ発生します。例えば、aが新し

いバージョンの bとはインストールできない場合を考えてみましょう。その場合、aは bが入るために削

除されるかもしれません。

Of course, there is another reason to remove a package from testing: it's just too buggy (and having a single
RC-bug is enough to be in this state).

さらに、パッケージが不安定版 (unstable)から削除され、テスト版 (testing)にはこれに依存するパッ

ケージがもうなくなった場合、パッケージは自動的に削除されます。

5.14.2.3 循環依存

britneyによってうまく取扱われない状況は、パッケージ aがパッケージ bの新しいバージョンに依存して

いて、そしてその逆も、というものです。

この場合の例:

テスト版 不安定版

a 1; depends: b=1 2; depends: b=2
b 1; depends: a=1 2; depends: a=2

パッケージ aあるいはパッケージ bが更新対象と見做されない。

現状、このような場合はリリースチームによる手動でのヒントが必要になります。あなたのパッケージの

どれかにこのような状況が起きた場合は、debian-release@lists.debian.orgにメールを送って連絡を

取ってください。

5.14.2.4 テスト版 (testing)にあるパッケージへの影響

Generally, there is nothing that the status of a package in testing means for transition of the next version from
unstable to testing, with two exceptions: If the RC-bugginess of the package goes down, it may go in even if it
is still RC-buggy. The second exception is if the version of the package in testing is out of sync on the different
arches: Then any arch might just upgrade to the version of the source package; however, this can happen only if
the package was previously forced through, the arch is in outofsync_arches, or there was no binary package of that
arch present in unstable at all during the testing migration.

この要旨: 影響は、テスト版 (testing)にあるパッケージが、同じパッケージの新しいバージョンになる
のは、新しいバージョンの方が楽にできそうだから、ということです。

5.14.2.5 詳細について

詳細について知りたい場合ですが、britneyの動作は以下のようになります:

パッケージが、適切な候補であるかどうかを決めるために確認が行われます。これによって、更新が実行さ

れます。パッケージが候補とみなされない理由でもっともよくあるのは、まだ日数が経過していない (too
young)、RCバグがある、いくつかのアーキテクチャで古くなりすぎている、というものです。britneyのこ

64 第 5章パッケージの取扱い方

Debian Developer’s Reference,リリース 14.3

の部分では、リリースマネージャーが britneyがパッケージを検討できるように、hintsと呼ばれる様々な
サイズのハンマーを使います (下記を参照してください)。

さて、より複雑な部分に差し掛かります: Britneyが適正候補を使ってテスト版 (testing)を更新しようと
します。このため、britneyはテスト版ディストリビューションに個々の適正な候補を追加しようとします。
テスト版 (testing)でインストール不可能なパッケージの数が増えないのであれば、パッケージは受け

入れられます。その時から、受け入れられたパッケージはテスト版 (testing)の一部として取り扱われ、

このパッケージを含めるためのインストールチェックテストが引き続き行われます。リリースチームから

の hintsは、実際の内容に応じて、このメインの処理の前後に処理されます。

より詳細を見たい場合は、https://release.debian.org/britney/update_output/で探すことができます。

The hints are available via https://release.debian.org/britney/hints/, where you can find the description as well.
With the hints, the Debian Release team can block or unblock packages, ease or force packages into testing,
remove packages from testing, approve uploads to直接テスト版を更新する or override the urgency.

5.14.3 直接テスト版を更新する

テスト版 (testing)ディストリビューションは、上記で説明したルールに従って不安定版 (unstable)か

らのパッケージで作られています。しかし、時折、テスト版 (testing)の為だけに構築したパッケージを

アップロードする必要があるという場合があります。そのためには、testing-proposed-updatesにアッ

プロードするのが良いでしょう。

Keep in mind that packages uploaded there are not automatically processed; they have to go through the
hands of the release manager. So you'd better have a good reason to upload there. In order to know what
a good reason is in the release managers' eyes, you should read the instructions that they regularly give on
debian-devel-announce@lists.debian.org.

You should not upload to testing-proposed-updates when you can update your packages through unstable.
If you can't (for example because you have a newer development version in unstable), you may use this facility.
Even if a package is frozen, updates through unstable are possible, if the upload via unstable does not pull in
any new dependencies.

バージョン番号は、通常 +debXuYを付加することで指定されます。X は Debianのメジャーリリース番号
で Y は 1から始まる数です。例: 1:2.4.3-4+deb13u1

アップロードでは、以下の項目のいずれも見落とさないように必ずしてください:

• 本当に testing-proposed-updatesを通す必要があり、unstableではダメなことを確認する;

• 必ず、最小限な量だけの変更を含めるようにする;

• 必ず changelog中に適切な説明を含める;

• 必ず、対象とするディストリビューションとして testingリリースのコードネーム (e.g. forky)を記
述している;

• 必ず不安定版 (unstable)ではなくテスト版 (testing)でパッケージを構築・テストしている;

• バージョン番号が testingおよび testing-proposed-updatesのものよりも大きく、unstableの

ものよりも小さいのを確認する;

• Ask for authorization for uploading from the release managers.

5.14. テスト版ディストリビューション 65

https://release.debian.org/britney/update_output/
https://release.debian.org/britney/hints/
https://release.debian.org/doc/britney/hints.html

Debian Developer’s Reference,リリース 14.3

• アップロードしてすべてのプラットフォームで構築が成功したら、debian-release@lists.debian.
org宛でリリースチームに連絡を取って、アップロードを承認してくれるように依頼しましょう。

5.14.4 よく聞かれる質問とその答え (FAQ)

5.14.4.1 リリースクリティカルバグとは何ですか、どうやって数えるのですか?

ある重要度以上のバグすべてが通常リリースクリティカルであると見なされます。現在のところ、critical

(致命的)、grave (重大)、serious (深刻)バグがそれにあたります。

そのようなバグは、Debianの安定版 (stable)リリース時に、そのパッケージがリリースされる見込みに
影響があるものと仮定されます: 一般的に、パッケージでオープンになっているリリースクリティカルバグ
がある場合、そのパッケージはテスト版 (testing)に入らず、その結果安定版 (stable)ではリリースさ
れません。

The unstable bug count comprises all release-critical bugs that are marked to apply to package/version combi-
nations available in unstable for a release architecture. The testing bug count is defined analogously.

5.14.4.2 どのようにすれば、他のパッケージを壊す可能性があるパッケージをテスト版 (testing)へイン
ストールできますか?

ディストリビューションにおけるアーカイブの構造では、一つのバージョンのパッケージだけを持つこ

とができ、パッケージは名前によって定義されています。そのため、ソースパッケージ acmefoo がテス

ト版 (testing)にインストールされると、付随するバイナリパッケージ acme-foo-bin、acme-bar-bin、

libacme-foo1、libacme-foo-devの古いバージョンが削除されます。

However, the old version may have provided a binary package with an old soname of a library, such as
libacme-foo0. Removing the old acmefoo will remove libacme-foo0, which will break any packages that
depend on it.

Evidently, this mainly affects packages that provide changing sets of binary packages in different versions (in turn,
mainly libraries). However, it will also affect packages upon which versioned dependencies have been declared of
the ==, <=, or << varieties.

When the set of binary packages provided by a source package changes in this way, all the packages that depended
on the old binaries will have to be updated to depend on the new binaries instead. Because installing such a source
package into testing breaks all the packages that depended on it in testing, some care has to be taken now: all
the depending packages must be updated and ready to be installed themselves so that they won't be broken, and,
once everything is ready, manual intervention by the release manager or an assistant is normally required.

この様に複雑な組み合わせのパッケージで問題がある場合は、debian-devel@lists.debian.orgあるい

は debian-release@lists.debian.orgに連絡を取って手助けを求めてください。

5.15 The Stable backports archive

5.15.1 基本

Once a package reaches the testing distribution, it is possible for anyone with upload rights in Debian (see below
about this) to build and upload a backport of that package to stable-backports, to allow easy installation of the
version from testing onto a system that is tracking the stable distribution.

66 第 5章パッケージの取扱い方

Debian Developer’s Reference,リリース 14.3

One should not upload a version of a package to stable-backports until the matching version has already
reached the testing archive.

5.15.2 Exception to the testing-first rule

The only exception to the above rule, is when there's an important security fix that deserves a quick upload: in
such a case, there is no need to delay an upload of the security fix to the stable-backports archive. However,
it is strongly advised that the package is first fixed in unstable before uploading a fix to the stable-backports
archive.

5.15.3 Who can maintain packages in the stable-backports archive?

It is not necessarily up to the original package maintainer to maintain the stable-backports version of the pack-
age. Anyone can do it, and one doesn't even need approval from the original maintainer to do so. It is however
good practice to first get in touch with the original maintainer of the package before attempting to start the main-
tenance of a package in stable-backports. The maintainer can, if they wish, decide to maintain the backport
themselves, or help you doing so. It is not uncommon, for example, to apply a patch to the unstable version of a
package, to facilitate its backporting.

5.15.4 When can one start uploading to stable-backports?

The new stable-backports is created before the freeze of the next stable suite. However, it is not allowed
to upload there until the very end of the freeze cycle. The stable-backports archive is usually opened a few
weeks before the final release of the next stable suite, but it doesn't make sense to upload until the release has
actually happened.

5.15.5 How long must a package be maintained when uploaded to stable-
backports?

The stable-backports archive is maintained for bugs and security issues during the whole life-cycle of the De-
bian stable suite. Therefore, an upload to stable-backports, implies a willingness to maintain the backported
package for the duration of the stable suite, which can be expected to be about 3 years from its initial release.

The person uploading to backports is also supposed to maintain the backported packages for security during the
lifetime of stable.

It is to be noted that the stable-backports isn't part of the LTS or ELTS effort. The stable-backports FTP
masters will close the stable-backports repositories for uploads once stable reaches end-of-life (ie: when
stable becomes maintained by the LTS team only). Therefore there won't be any maintenance of packages from
stable-backports after the official end of life of the stable suite, as uploads will not be accepted.

5.15.6 How often shall one upload to stable-backports?

The packages in backports are supposed to follow the developments that are happening in Testing. Therefore, it
is expected that any significant update in testing should trigger an upload into stable-backports, until the
new stable is released. However, please do not backport minor version changes without user visible changes or
bugfixes.

5.15. The Stable backports archive 67

Debian Developer’s Reference,リリース 14.3

5.15.7 How can one learn more about backporting?

You can learn more about how to contribute directly on the backport web site.

It is also recommended to read the Frequently Asked Questions (FAQ).

68 第 5章パッケージの取扱い方

https://backports.debian.org/Contribute/
https://backports.debian.org/FAQ/

69

第6章 パッケージ化のベストプラクティス

Debian's quality is largely due to the Debian Policy, which defines explicit baseline requirements that all Debian
packages must fulfill. Yet there is also a shared history of experience which goes beyond the Debian Policy, an
accumulation of years of experience in packaging. Many very talented people have created great tools, tools which
help you, the Debian maintainer, create and maintain excellent packages.

この章では、Debian開発者へのベストプラクティスをいくつか提供します。すべての勧めは単に勧めであ
り、要求事項やポリシーではありません。Debian開発者らからの主観的なヒント、アドバイス、ポインタ
です。あなたにとって一番うまくいくやり方を、どうぞご自由に選んでください。

6.1 debian/rulesについてのベストプラクティス
The following recommendations apply to the debian/rules file. Since debian/rules controls the build process
and selects the files that go into the package (directly or indirectly), it's usually the file maintainers spend the most
time on.

6.1.1 ヘルパースクリプト

debian/rulesでヘルパースクリプトを使う根拠は、多くのパッケージ間でメンテナらに共通のロジック

を利用・共有させるようになるからです。メニューエントリのインストールについての問いを例にとって

みましょう: ファイルを /usr/share/menu (必要であれば、実行形式のバイナリのメニューファイルの場
合 /usr/lib/menu)に置き、メンテナスクリプトにメニューエントリを登録・解除するためのコマンドを
追加する必要があります。これはパッケージが行う、非常に一般的なことです。なぜ個々のメンテナがこ

れらのすべてを自分で書き直し、時にはバグを埋め込む必要があるでしょう? また、メニューディレクト
リが変更された場合、すべてのパッケージを変更する必要があります。

ヘルパースクリプトがこれらの問題を引き受けてくれます。ヘルパースクリプトの期待するやり方に従っ

ているならば、ヘルパースクリプトはすべての詳細について考慮をします。ポリシーの変更はヘルパース

クリプト中で行えます;そして、パッケージを新しいバージョンのヘルパースクリプトでリビルドする必要
があるだけです。他に何の変更も必要ありません。

Debianメンテナツールの概要には、複数の異なったヘルパーが含まれています。もっとも一般的で (我々
の意見では)ベストなヘルパーシステムは debhelperです。debmakeのような、以前のヘルパーシステム

はモノリシックでした: 使えそうなヘルパーの一部を取り出して選ぶことはできず、何を行うにもヘルパー
を使う必要がありました。ですが、debhelperは、いくつもの分割された小さな dh_*プログラムです。た

とえば、dh_installmanは manページをインストールして圧縮し、dh_installmenuは menuファイルを
インストールするなどします。つまり、debian/rules内で使える部分では小さなヘルパースクリプトを

使い、手製のコマンドを使うといった十分な柔軟性を与えてくれます。

debhelper 1 を読んで、パッケージに付属している例を参照すれば、debhelper を使い始めることができ

ます。 dh-makeパッケージ (dh-make参照)の dh_makeは、素のソースパッケージを debhelper化された

https://www.debian.org/doc/debian-policy/

Debian Developer’s Reference,リリース 14.3

パッケージに変換するのに利用できます。ですが、この近道では個々の dh_*ヘルパーをわざわざ理解する

必要がないので、満足できないでしょう。ヘルパースクリプトを使おうとするのであれば、そのヘルパー

を使うこと、つまり前提と動作を学ぶのに時間を割く必要があります。

6.1.2 複数のバイナリパッケージ

A single source package will often build several binary packages, either to provide several flavors of the same
software (e.g., the vim source package) or to make several small packages instead of a big one (e.g., so the user
can install only the subset needed, and thus save some disk space, see for example the libxml2 source package).

二つ目の例は、debian/rulesで簡単に扱うことができます。ビルドディレクトリからパッケージの一時ツ

リーへ、適切なファイルを移動する必要があるだけです。これは、installまたは debhelperの dh_install

を使ってできます。パッケージ間の依存関係を debian/control内で正しく設定したのを忘れずに確認し

てください。

The first case is a bit more difficult since it involves multiple recompiles of the same software but with different
configuration options. The vim source package is an example of how to manage this using a hand-crafted debian/
rules file.

6.2 debian/controlのベストプラクティス
以下のプラクティスは、debian/controlファイルに関するものです。パッケージ説明文についてのポリ

シーを補完します。

パッケージの説明文は、controlファイルの対応するフィールドにて定義されている様に、パッケージの

概要とパッケージに関する長い説明文の両方を含んでいます。パッケージ説明文の基本的なガイドライン

では、パッケージ説明文の双方の部分についての一般的なガイドラインが記述されています。それによる

と、パッケージの概要、あるいは短い説明文が概要に特化したガイドラインを提供しており、そして長い

説明文 (long description)が説明文 (description)に特化したガイドラインを含んでいます。

6.2.1 パッケージ説明文の基本的なガイドライン

パッケージの説明文は平均的なユーザーに向けて書く必要があります。平均的な人というのは、パッケー

ジを使って得をするであろう人のことです。例えば、開発用パッケージであれば開発者向けですし、彼ら

向けの言葉でテクニカルに記述することができます。より汎用的なアプリケーション、例えばエディタな

どであれば、あまり技術的ではないユーザ向けに書く必要があります。

パッケージ説明文のレビューを行った結果、ほとんどのものがテクニカルである、つまり、技術に詳しく

はないユーザに通じるようには書かれてはいないという結論に達しました。あなたのパッケージが、本当

に技術に精通したユーザ用のみではない限り、これは問題です。

どうやって技術に詳しくはないユーザに対して書けばいいのでしょう? ジャーゴンを避けましょう。ユー
ザが詳しくないであろう他のアプリケーションやフレームワークへの参照を避けましょうー GNOME や
KDEについては、おそらくユーザはその言葉について知っているでしょうから構いませんが、GTKはお
そらくダメです。まったく知識がないと仮定してみましょう。技術用語を使わねばならない場合は、説明

しましょう。

70 第 6章パッケージ化のベストプラクティス

https://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions
https://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions

Debian Developer’s Reference,リリース 14.3

客観的になりましょう。パッケージ説明文はあなたのパッケージの宣伝場所ではありません。あなたがそ

のパッケージをどんなに愛しているかは関係ありません。その説明文を読む人は、あなたが気にすること

と同じことを気にはしないであろうことを覚えておいてください。

他のソフトウェアパッケージ、プロトコル名、標準規格、仕様の名前を参照する場合には、もしあれば正規

名称を使いましょう。X Windowsや X-Windowsや X Windowではなく、X Window Systemあるいは X11
または Xを使いましょう。GTK+や gtkではなく GTKを使いましょう。Gnomeではなく GNOMEを使い
ましょう。Postscriptや postscriptではなく PostScriptを使いましょう。

説明文を書くことに問題があれば、debian-l10n-english@lists.debian.orgへそれを送ってフィード

バックを求めるとよいでしょう。

6.2.2 パッケージの概要、あるいは短い説明文

ポリシーでは、概要行 (短い説明文)はパッケージ名を繰り返すのではなく、簡潔かつ有益なものである必
要がある、となっています。

概要は、完全な文章ではなくパッケージを記述するフレーズとして機能します。ですので、句読点は不適

切です: 追加の大文字や最後のピリオドは不要です。また、最初の不定冠詞や定冠詞̶ "a", "an", or "the"
を削る必要があります。つまり、例えば以下のようになります:

Package: libeg0

Description: exemplification support library

技術的に言えば、動詞のフレーズに対して、これは名詞のフレーズから文章を差し引いたものです。パッ

ケージ名と要約をこの決まり文句に代入できるのがよい見つけ方です:

パッケージの名前は概要を提供します。

関連パッケージ群は、概要を 2つに分けた別の書き方をした方が良いでしょう。最初はその組一式の説明
文で、その次はその組内でのパッケージの役割のサマリにします:

Package: eg-tools

Description: simple exemplification system (utilities)

Package: eg-doc

Description: simple exemplification system - documentation

これらの要約が、手が加えられた決まり文句に続きます。パッケージ "名"が、"プログラム一式 (役割)"あ
るいは "プログラム一式 -役割"という要約を持つ場合、要素はフレーズにすべきで、決まり文句に合うよ
うになります:

パッケージ名は、プログラム一式に対する役割を表しています。

6.2.3 長い説明文 (long description)

長い説明文は、ユーザーがパッケージをインストールする前に利用可能な最初の情報です。ユーザーがイ

ンストールするか否かを決めるのに必要な情報を、すべて提供する必要があります。ユーザーがパッケー

ジの概要を既に読んでいると仮定してください。

6.2. debian/controlのベストプラクティス 71

Debian Developer’s Reference,リリース 14.3

長い説明文は、完全な文章から成る必要があります。

長い説明文の最初の段落は、以下の質問に答えている必要があります: このパッケージは何をするの? ユー
ザが作業を完了するのに、どのタスクが役に立つの? ─技術寄りではない書き方でこれを記述するのが重
要です。もちろんパッケージの利用者が必然的に技術者ではない限り、です。

Long descriptions of related packages, for example built from the same source, can share paragraphs in order
to increase consistency and reduce the workload for translators, but you need at least one separate paragraph
describing the package's specific role.

The following paragraphs should answer the following questions: Why do I as a user need this package? What
other features does the package have? What outstanding features and deficiencies are there compared to other
packages (e.g., if you need X, use Y instead)? Is this package related to other packages in some way that is not
handled by the package manager (e.g., is this the client for the foo server)?

スペルミスや文法の間違いを避けるよう、注意してください。スペルチェックを確実に行ってください。

ispellと aspellの双方に、debian/controlファイルをチェックするための特別なモードがあります:

ispell -d american -g debian/control

aspell -d en -D -c debian/control

通常、ユーザは以下のような疑問がパッケージ説明文で答えられることを期待しています:

• パッケージは何をするの? 他のパッケージのアドオンだった場合、パッケージがアドオンであるとい
うことを概要文に書く必要があります。

• なぜこのパッケージを使うべきなの? これは上記に関連しますが、同じではありません (これはメー
ルユーザーエージェントです;クールで速く、PGPや LDAPや IMAPのインターフェイスがあり、X
や Yや Zの機能があります)。

• パッケージが直接インストールされるべきではないが、他のパッケージから引っ張ってこられる時に
は、付記しておく必要があります。

• パッケージが実験的である、あるいは使われない方が良い他の理由がある場合、同様にここに記載す
る必要があります。

• How is this package different from the competition? Is it a better implementation? more features? different
features? Why should I choose this package?

6.2.4 開発元のホームページ

debian/control中の Sourceセクションの Homepageフィールドへ、パッケージのホームページのURLを
追加することをお勧めします。この情報をパッケージ説明文自身に追加するのは推奨されない (deprecated)
であると考えられています。

72 第 6章パッケージ化のベストプラクティス

Debian Developer’s Reference,リリース 14.3

6.2.5 バージョン管理システムの場所

debian/controlには、バージョン管理システムの場所についての追加フィールドがあります。

6.2.5.1 Vcs-Browser

このフィールドの値は、指定したパッケージのメンテナンスに使われているバージョン管理システムのリ

ポジトリのコピーがもしあれば、それを指し示す https:// URLである必要があります。

この情報は、パッケージに行われた最新の作業を閲覧したいエンドユーザにとって有用であるのが目的で

す (例: バグ追跡システムで pendingとタグがつけられているバグを修正するパッチを探している場合)。

6.2.5.2 Vcs-*

Value of this field should be a string identifying unequivocally the location of the Version Control System repository
used to maintain the given package, if available. * identifies the Version Control System; currently the following
systems are supported by the package tracking system: arch, bzr (Bazaar), cvs, darcs, git, hg (Mercurial), mtn
(Monotone), svn (Subversion).

この情報は、そのバージョン管理システムについて知識があり、VCSソースから現在のバージョンパッケー
ジを生成ユーザにとって有益であるよう意図されています。この情報の他の使い方としては、指定された

パッケージの最新の VCSバージョンを自動ビルドするなどがあるかもしれません。このため、フィールド
によって指し示される場所は、バージョンに関係なく、(そのようなコンセプトをサポートしている VCSで
あれば)メインブランチを指すのが良いでしょう。また、指し示される場所は一般ユーザがアクセス可能で
ある必要があります;この要求を満たすには SSHアクセス可能なリポジトリを指すのではなく、匿名アク
セスが可能なリポジトリを指すようにすることを意味します。

In the following example, an instance of the field for a Git repository of the vim package is shown. Note how
the URL is in the https:// scheme (instead of ssh://). The use of the Vcs-Browser and Homepage fields
described above is also shown.

Source: vim

<snip>

Vcs-Git: https://salsa.debian.org/vim-team/vim.git

Vcs-Browser: https://salsa.debian.org/vim-team/vim

Homepage: https://www.vim.org

Maintaining the packaging in a version control system, and setting a Vcs-* header is good practice and makes it
easier for others to contribute changes.

Almost all packages in Debian that use a version control system use Git; if you create a new package, using Git is
a good idea simply because it's the system that contributors will be familiar with.

DEP-14 defines a common layout for Debian packages.

6.2. debian/controlのベストプラクティス 73

https://dep-team.pages.debian.net/deps/dep14/

Debian Developer’s Reference,リリース 14.3

6.3 debian/changelogのベストプラクティス
以下のプラクティスは changelogファイルに対するポリシーを補完します。

6.3.1 役立つ changelogのエントリを書く

パッケージリビジョンに対する changelogエントリは、そのリビジョンでの変更それだけを記載します。最
後のバージョンから行われた、重要な、そしてユーザに見える形の変更を記述することに集中しましょう。

何が変更されたかについて集中しましょう̶誰が、どうやって、何時なのか通常あまり重要ではありませ

ん。そうは言っても、パッケージ作成について明記すべき手助けをしてくれた人々 (例えば、パッチを送っ
てくれた人)を丁寧に明記するのを忘れないようにしましょう。

些細で明白な変更を詳細に書く必要はありません。複数の変更点を一つのエントリにまとめることもで

きます。逆に言えば、大きな変更をした場合には、あまりに簡潔にしすぎないようにしましょう。プロ

グラムの動作に影響を与える変更がある場合には、特に確認しておきましょう。詳細な説明については、

README.Debianファイルを使ってください。

平易な英語を使いましょう。そうすれば読者の大半が理解できます。バグをクローズする変更を説明する

際には略語や、テクニカルな言い方やジャーゴンを避けましょう。特に、技術的に精通していないと思わ

れるユーザによって登録されたバグを閉じる際には気をつけましょう。礼儀正しく、断言をしないように。

時折、changelogエントリに変更したファイルの名前を頭に付けたくなることがあります。ですが、個々の
すべての変更したファイルを一覧にする必要性はありません。特に変更点が小さくて繰り返される場合で

す。ワイルドカードを使いましょう。

バグに触れる際には、何も仮定しないようにしましょう。何が問題だったのか、どうやってそれが直され

たのかについて言い、closes: #nnnnnの文字列を追加しましょう。詳細については新規アップロードでバ
グがクローズされる時を参照してください。

6.3.2 Selecting the upload urgency

The release team have indicated that they expect most uploads to unstable to use urgency=medium. That is,
you should choose urgency=medium unless there is some particular reason for the upload to migrate to testing

more quickly or slowly (see also不安定版からの更新). For example, you might select urgency=low if the changes
since the last upload are large and might be disruptive in unanticipated ways.

The delays are currently 2, 5 or 10 days, depending on the urgency (high, medium or low). The actual numbers
are actually controled by the britney configuration which also includes accelerated migrations when Autopkgtest
passes.

6.3.3 changelogのエントリに関するよくある誤解

changelogエントリは、一般的なパッケージ化の事柄 (ほら、foo.confを探しているなら /etc/blahにあるよ)
を記載するべきではありません。何故なら、管理者やユーザは少なくとも Debianシステム上でそのような
ことがどのように扱われるかを多少は知らされているでしょうから。ですが、設定ファイルの場所を変更

したのであれば、それは一言添えておくべきです。

74 第 6章パッケージ化のベストプラクティス

https://www.debian.org/doc/debian-policy/ch-docs.html#s-changelogs
https://release.debian.org/britney/britney.conf

Debian Developer’s Reference,リリース 14.3

changelogエントリでクローズされるバグは、実際にそのパッケージリビジョンで修正されたものだけにす
べきです。changelogで関係ないバグを閉じるのは良くない習慣です。新規アップロードでバグがクローズ
される時を参照してください。

changelogエントリは、バグ報告者との各種の議論の場 (fooをオプション bar付きで起動した際にはセグメ
ンテーションフォルトは見られません;もっと詳しい情報を送ってください)、生命、宇宙、そして万物に
ついての概要 (すいませんが、このアップロードに時間がかかったので風邪をひきました)、手助けの求め
(このパッケージのバグ一覧は巨大です、手を貸してください)に使うべきではありません。そのようなこ
とは、大抵の場合対象としている読者は気づくことが無く、パッケージで実際にあった変更点の情報につ

いて読みたい人々を悩ますことでしょう。どの様にバグ報告システムを使えばいいのかについて、詳細な

情報はバグへの対応を参照してください。

正式なメンテナによるアップロードの changelogエントリの最初で、non-maintainer uploadで修正されたバ
グを承認するのは、古い慣習です。今はバージョン管理を行っているので、NMUされた changelogエント
リを残しておいて自分の changelogエントリ中でその事実に触れるだけで十分です。

6.3.4 changelogのエントリ中のよくある間違い

以下の例で、changelogエントリ中のよくある間違いや間違ったスタイルの例を挙げます。

* Fixed all outstanding bugs.

これは、全く読み手に何も有用なことを教えてくれません。

* Applied patch from Jane Random.

何についてのパッチですか?

* Late night install target overhaul.

何をオーバーホールしてどうなったのですか? 深夜というのに言及しているのは、私たちにこのコードを
信用するなと言いたいのですか?

* Fix vsync fw glitch w/ ancient CRTs.

Too many acronyms (what does "fw" mean, "firmware"?), and it's not overly clear what the glitch was actually
about, or how it was fixed.

* This is not a bug, closes: #nnnnnn.

まず初めに、この情報を伝えるためにパッケージをアップロードする必要は、全くありません;代わりにバ
グ追跡システムを使ってください。次に、何故この報告がバグではなかったのかについての説明がありま

せん。

* Has been fixed for ages, but I forgot to close; closes: #54321.

If for some reason you didn't mention the bug number in a previous changelog entry, there's no problem, just close
the bug normally in the BTS. There's no need to touch the changelog file, presuming the description of the fix is

6.3. debian/changelogのベストプラクティス 75

Debian Developer’s Reference,リリース 14.3

already in (this applies to the fixes by the upstream authors/maintainers as well; you don't have to track bugs that
they fixed ages ago in your changelog).

* Closes: #12345, #12346, #15432

説明はどこ? 説明文を考えられないのなら、それぞれのバグのタイトルを入れるところから始めてください。

6.3.5 NEWS.Debianファイルで changelogを補足する

パッケージの変更に関する重要なニュースは NEWS.Debianファイルにも書くことができます。このニュー

スは apt-listchanges のようなツールで、残りすべての changelog の前に表示されます。これは、ユー
ザにパッケージ内の著しい変更点について知らせるのに好ましいやり方です。インストール後にユーザが

一旦戻って NEWS.Debianファイルを参照できるので、debconfの notesを使うより良いです。そして、目
立った変更点を README.Debianに列挙するより良いです。何故ならば、ユーザは容易にそのような注意書

きを見逃すからです。

ファイル形式は debian changelogファイルと同じですが、アスタリスク (*)を取って各ニュースを changelog
に書くような簡潔な要約ではなく、必要に応じて完全な段落で記述してください。changelogのようにビル
ド中に自動的にはチェックされないので、ファイルを dpkg-parsechangelogを実行してチェックするの

は良い考えです。実際の NEWS.Debianファイルの例が、以下になります:

cron (3.0pl1-74) unstable; urgency=low

The checksecurity script is no longer included with the cron package:

it now has its own package, checksecurity. If you liked the

functionality provided with that script, please install the new

package.

-- Steve Greenland <stevegr@debian.org> Sat, 6 Sep 2003 17:15:03 -0500

NEWS.Debianファイルは /usr/share/doc/package/NEWS.Debian.gzファイルとしてインストールされま
す。圧縮されていて、Debianネイティブパッケージ中でも常にこの名前です。debhelperを使う場合は、

dh_installchangelogsが debian/NEWSファイルをインストールしてくれます。

changelogファイルと違って、毎回のリリースごとに NEWS.Debianファイルを更新する必要はありません。

何か特にユーザが知るべき目新しいことがあったときにのみ、更新してください。全くニュースがない場

合、NEWS.Debianファイルをパッケージに入れてリリースする必要はありません。便りが無いのは良い知

らせ、です (No news is good news!)。

6.4 セキュリティに関するベストプラクティス
A set of suggestions and links to other reference documents around security aspects for packaging can be found at
the Developer's Best Practices for OS Security chapter inside the Securing Debian Manual.

76 第 6章パッケージ化のベストプラクティス

https://www.debian.org/doc/manuals/securing-debian-manual/ch09.en.html

Debian Developer’s Reference,リリース 14.3

6.5 メンテナスクリプトのベストプラクティス
Maintainer scripts include the files debian/postinst, debian/preinst, debian/prerm and debian/postrm.
These scripts take care of any package installation or deinstallation setup that isn't handled merely by the creation
or removal of files and directories. The following instructions supplement the Debian Policy.

メンテナスクリプトは冪等でなければなりません。これは、通常は 1回呼ばれるスクリプトが 2回呼ばれ
た場合、何も悪いことが起きないのを保証する必要があるという意味です。

標準入出力はログの取得のためにリダイレクトされることがあります (例: パイプへ向けられる)。ですの
で、これらが ttyであることに依存してはいけません。

質問や対話的な設定はすべて最小限に止めておく必要があります。必要になった時は、インターフェイス

に debconfパッケージを使いましょう。どのような場合でも、質問は postinstスクリプトの configure

段階にのみ、配置することができます。

メンテナスクリプトは、できる限りシンプルなものにしておきましょう。我々は、あなたは純粋な POSIX
シェルスクリプトを使っているものだと考えています。覚えておいて欲しいのですが、何かしら bashの機
能が必要になったら、メンテナスクリプトは bashのシェバン行にしておく必要があります。スクリプト
へ簡単にちょっとした変更を追加するのに debhelperを使えるので、Perlより POSIXシェル、あるいは
Bashの方が好まれます。

メンテナスクリプトを変更したら、パッケージの削除や二重インストール、purgeのテストを確認してくだ
さい。purgeされたパッケージが完全に削除されたことを確認してください。つまり、メンテナスクリプト
中で直接／間接を問わず作成されたファイルを削除する必要があるということです。

コマンドの存在をチェックする必要がある場合は、このような感じで行います

if command -v install-docs > /dev/null; then ...

コマンド名を引数として渡すことで、$PATHの検索するのにこの関数を使うことができます。コマンドが

見つかった場合は true (ゼロ)を返し、そうでない場合は falseを返します。command -vは POSIXに定義
されていて、多くのシェルで使えるので、これがもっとも汎用性の高いやり方です。

Using which is an acceptable alternative, since it is from the required debianutils package.

6.6 debconf による設定管理
Debconf is a configuration management system that can be used by all the various packaging scripts (postinst
mainly) to request feedback from the user concerning how to configure the package. Direct user interactions must
now be avoided in favor of debconf interaction. This will enable non-interactive installations in the future.

debconfは素晴らしいツールですが、しばしば適当に扱われています。多くの共通する失敗は、debconf-devel
7 manページに記載されています。これは、debconfを使うのを決めた時、あなたが読むべきものです。ま
た、ここではベストプラクティスを記述しています。

これらのガイドラインは、ディストリビューションの一部 (例えば、インストールシステム)に関する、よ
り明確な推奨と同様に、幾つかの書き方と体裁に関する推奨、そして debconfの使い方についての一般的
な考慮すべき事柄を含んでいます。

6.5. メンテナスクリプトのベストプラクティス 77

https://www.debian.org/doc/debian-policy/

Debian Developer’s Reference,リリース 14.3

6.6.1 debconfを乱用しない

debconfが Debianに現れて以来、広く乱用され続けています。そして、debconfの乱用によって、ちょっと
したものをインストールする前に、大量の質問に答える必要があることに由来するいくつもの非難がDebian
ディストリビューションに寄せられました。

Keep usage notes to where they belong: the NEWS.Debian, or README.Debian file. Only use notes for impor-
tant notes that may directly affect the package usability. Remember that notes will always block the install until
confirmed or bother the user by email.

Carefully choose the questions' priorities in maintainer scripts. See debconf-devel 7 for details about priorities.
Most questions should use medium and low priorities.

6.6.2 作者と翻訳者に対する雑多な推奨

6.6.2.1 正しい英語を書く

ほとんどの Debianパッケージメンテナはネイティブの英語話者ではありません。ですので、正しいフレー
ズのテンプレートを書くのは彼らにとっては容易ではありません。

debian-l10n-english@lists.debian.orgメーリングリストを利用してください (むしろ乱用してくださ
い)。テンプレートを査読してもらいましょう。

下手に書かれたテンプレートは、パッケージに対して、そしてあなたの作業に対して、さらには Debianそ
れ自体にすら対して、悪い印象を与えます。

可能な限り技術的なジャーゴンを避けましょう。いくつかの用語があなたにとっては普通に聞こえても、

他の人には理解不可能かもしれません。避けられない場合には、 (説明文を使って)解説してみましょう。
その場合には、冗長さとシンプルさのバランスを取るようにしましょう。

6.6.2.2 翻訳者へ丁寧に接する

Debconf templates may be translated. Debconf, along with its sister package po-debconf, offers a simple frame-
work for getting templates translated by translation teams or even individuals.

gettextベースのテンプレートを使ってください。開発用のシステムに po-debconfをインストールしてド

キュメントを読みましょう (man po-debconfが取っ掛かりとして良いでしょう)。

Avoid changing templates too often. Changing template text induces more work for translators, which will get their
translation fuzzied. A fuzzy translation is a string for which the original changed since it was translated, therefore
requiring some update by a translator to be usable. When changes are small enough, the original translation is kept
in PO files but marked as fuzzy.

大本のテンプレートを変更する予定がある場合、po-debconf パッケージで提供されている、

podebconf-report-poという名の通知システムを使って翻訳作業者にコンタクトを取ってください。ほ

とんどのアクティブな翻訳作業者たちはとても反応が良く、変更を加えたテンプレートに対応するため

の作業をしてくれ、あなたが追加でアップロードする必要を減らしてくれます。gettext ベースのテンプ
レートを使っている場合、翻訳作業者の名前とメールアドレスは POファイルのヘッダに表示されており、
podebconf-report-poによって使われます。

このユーティリティの使い方のお勧めの使い方:

78 第 6章パッケージ化のベストプラクティス

Debian Developer’s Reference,リリース 14.3

cd debian/po && podebconf-report-po --call --languageteam --withtranslators --

↪→deadline="+10 days"

This command will first synchronize the PO and POT files in debian/po with the template files listed in debian/

po/POTFILES.in. Then, it will send a call for new translations, in the debian-i18n@lists.debian.org

mailing list. Finally, it will also send a call for translation updates to the language team (mentioned in the
Language-Team field of each PO file) as well as the last translator (mentioned in Last-translator).

翻訳作業者に締切りを伝えるのは常にお勧めです。それによって、彼らは作業を調整できます。いくつか

の翻訳作業チームは形式化された翻訳／レビュープロセスを整えており、10日未満の猶予は不合理である
と考えられています。より短い猶予期間は強すぎるプレッシャーを翻訳チームに与えるので、非常に些細

な変更点に対してのみに留めるべきです。

迷った場合は、該当の言語の翻訳チーム (debian-l10n-xxxxx@lists.debian.org) か debian-i18n@lists.

debian.orgにも問い合わせましょう。

6.6.2.3 誤字やミススペルを修正する際に fuzzyを取る

debconfテンプレートの文章が修正されて、その変更が翻訳に影響しないと確信している場合には、翻訳作
業者を労って翻訳文を fuzzyを取り除いてください。

そうしないと、翻訳作業者が更新をあなたに送るまでテンプレート全体は翻訳されていない状態になります。

翻訳を fuzzyではなくすために、(po4aパッケージの一部である)msguntypotを使うことができます。

1. POTファイルと POファイルを再生成する。

debconf-updatepo

2. POTファイルのコピーを作成する。

cp templates.pot templates.pot.orig

3. すべての POファイルのコピーを作成する。

mkdir po_fridge; cp *.po po_fridge

4. debconfテンプレートファイルを誤字修正のために変更する。

5. POTファイルと POファイルを再生成する (もう一度)。

debconf-updatepo

この時点では、typo修正はすべての翻訳を fuzzyにしており、この残念な変更はメインディレクトリ
の POファイルと fridgeの POファイルのみに適用されている。ここではどの様にしてこれを解決す
るかを示す。

6. fuzzyになった翻訳を捨て、fridgeから作り直す。

cp po_fridge/*.po .

6.6. debconf による設定管理 79

mailto:debian-l10n-xxxxx@lists.debian.org

Debian Developer’s Reference,リリース 14.3

7. 手動で POファイルと新しい POTファイルをマージするが、不要な fuzzyを考慮に入れる。

msguntypot -o templates.pot.orig -n templates.pot *.po

8. ゴミ掃除。

rm -rf templates.pot.orig po_fridge

6.6.2.4 インターフェイスについて仮定をしない

Templates text should not make reference to widgets belonging to some debconf interfaces. Sentences like If you
answer Yes... have no meaning for users of graphical interfaces that use checkboxes for boolean questions.

文字列テンプレートは、説明文中でのデフォルト値について言及することも避けましょう。まず、ユーザ

によってそして、デフォルト値はメンテナの考え方によって違う場合があるからです (たとえば、debconf
データベースが preseedで指定されている場合など)。

より一般的に言うと、ユーザの行動を参照させるのを避けるようにしましょう。単に事実を与えましょう。

6.6.2.5 一人称を使わない

You should avoid the use of first person (I will do this... or We recommend...). The computer is not a person and
the Debconf templates do not speak for the Debian developers. You should use neutral construction. Those of
you who already wrote scientific publications, just write your templates like you would write a scientific paper.
However, try using the active voice if still possible, like Enable this if ... instead of This can be enabled if....

6.6.2.6 性差に対して中立であれ

As a way of showing our commitment to our diversity statement, please use gender-neutral constructions in your
writing. This means avoiding pronouns like he/she when referring to a role (like "maintainer") whose gender is
unknown. Instead, you should use the plural form (singular they).

6.6.3 テンプレートのフィールド定義

この章の情報は、ほとんどを debconf-devel 7マニュアルページから得ています。

6.6.3.1 Type

string

ユーザがどのような文字列でも記述可能な自由記述形式の入力フィールドの結果。

password

ユーザにパスワードの入力を求めます。これを使う場合は注意して使ってください: ユーザが入力したパ
スワードは debconfのデータベースに書き込まれることに注意してください。おそらく、この値をデータ
ベースから可能な限り早く消す必要があります。

80 第 6章パッケージ化のベストプラクティス

https://www.debian.org/intro/diversity
https://en.wikipedia.org/wiki/Singular_they

Debian Developer’s Reference,リリース 14.3

boolean

true/falseの選択です。注意点: true/falseであって、yes/noではありません...

select

複数の値から一つを選びます。選択するものは 'Choices' というフィールド名で指定されている必要があ
ります。利用可能な値をコンマとスペースで区切ってください。以下のようになります: Choices: yes,

no, maybe

選択肢が翻訳可能な文字列である場合、'Choices'フィールドは __Choicesを使って翻訳可能であることを

示しておくと良いでしょう。2つのアンダースコアは、各選択肢を分かれた文字列に分割してくれます。

po-debconf システムは、翻訳可能ないくつかの選択肢のみをマークする面白い機能を提供してくれま

す。例:

Template: foo/bar

Type: Select

#flag:translate:3

__Choices: PAL, SECAM, Other

_Description: TV standard:

Please choose the TV standard used in your country.

この例では、他は頭文字から構成されていて翻訳できませんが、'Other'文字列だけは翻訳可能です。上記
では 'Other'だけが POおよび POTファイルに含めることができます。

debconfテンプレートのフラグシステムは、この様な機能をたくさん提供します。po-debconf 7マニュアル
ページでは、これらの利用可能な機能をすべて列挙しています。

multiselect

selectデータ型とそっくりですが、ユーザが選択肢一覧からいくつでも項目を選べる (あるいはどれも選ば
ないこともできる)点だけが違います。

note

本来質問ではありませんが、このデータ型が示すのはユーザに表示することができる覚え書きです。debconf
はユーザが必ず参照するようにするため、多大な苦痛を与えることになる (キーを押すためにインストール
を休止したり、ある場合にはメモをメールさえする)ので、ユーザが知っておく必要がある重要な記述にの
み使うべきです。

text

この typeは現状では古すぎるものと考えられています: 使わないでください。

error

This type is designed to handle error messages. It is mostly similar to the note type. Front ends may present it
differently (for instance, the dialog front end of cdebconf draws a red screen instead of the usual blue one).

何かを補正するためにユーザの注意を引く必要があるメッセージに対し、この typeを使うのがお勧めです。

6.6. debconf による設定管理 81

Debian Developer’s Reference,リリース 14.3

6.6.3.2 Description: shortおよび extended説明文

テンプレート説明文は 2つのパートに分かれます: shortと extendedです。短い説明文 (short description)は
テンプレートの Description: 行にあります。

短い説明文は、ほとんどの debconfインターフェイスに適用するように、短く (50文字程度に)しておく必
要があります。通常、翻訳はオリジナルよりも長くなる傾向にあるので、短くすることは翻訳作業者を助

けます。

The short description should be able to stand on its own. Some interfaces do not show the long description by
default, or only if the user explicitly asks for it or even do not show it at all. Avoid things like: "What do you want
to do?"

短い説明文は完全な文章である必要はありません。これは文章を短くしておき、効率的に推奨を行うため

です。

拡張された説明文 (extended description)は、短い説明文を一語一句繰り返しをしてはなりません。長い説
明文章を思いつかなければ、まず、もっと考えてください。debian-develに投稿しましょう。助けを求めま
しょう。文章の書き方講座を受講しましょう! この拡張された説明文は重要です。もし、まったく何も思
いつかなければ、空のままにしておきましょう。

拡張された説明文は完全な文章である必要があります。段落を短くしておくのは可読性を高めます。同じ

段落で 2つの考えを混ぜてはいけません。代わりに別の段落を書きます。

あまり冗長にしないようにしてください。ユーザは長すぎる画面を無視しようとします。経験からすると、

20行が越えてはならない境界です。何故ならば、クラシックなダイアログインターフェイスでは、スクロー
ルする必要がでてくることになり、そして多くの人がスクロールなどしないからです。

拡張された説明文では、質問を含めては決していけません。

テンプレートの type (string、booleanなど)に応じた特別なルールについては、以下を読んでください。

6.6.3.3 Choices

This field should be used for select and multiselect types. It contains the possible choices that will be presented to
users. These choices should be separated by commas.

6.6.3.4 Default

このフィールドはオプションです。これには、string、selectあるいは multiselectのデフォルトでの答えが
含まれます。multiselectテンプレートの場合、コンマで区切られた選択肢一覧が含まれます。

6.6.4 Template fields specific style guide

6.6.4.1 Typeフィールド

特別な指定はありません。一点だけ、その前のセクションを参照して適切な typeを使ってください。

82 第 6章パッケージ化のベストプラクティス

Debian Developer’s Reference,リリース 14.3

6.6.4.2 Descriptionフィールド

以下は、テンプレートの型に応じて適切なDescription (shortおよび extended)を書くための特別な指示です。

String/passwordテンプレート

• 短い説明文は、プロンプトであってタイトルではありません。質問形式のプロンプト (IP アドレス
は?) を避け、代わりに閉じていない形のプロンプト (IPアドレス:) を使ってください。コロン (:) の
使用をお勧めします。

• 拡張された説明文は、短い説明文を補足します。拡張の部分では、長い文章を使って同じ質問を繰り
返すのではなく、何を質問されているのかを説明します。完全な文章を書いてください。簡潔な書き

方は強く忌避されます。

Booleanテンプレート

• The short description should be phrased in the form of a question, which should be kept short and should
generally end with a question mark. Terse writing style is permitted and even encouraged if the question is
rather long (remember that translations are often longer than original versions).

• 繰り返しますが、特定のインターフェイスのウィジェットを参照するのを避けてください。このよう
なテンプレートで良くある間違いは、「はい」と答える形かどうかです。

Select/Multiselect

• The short description is a prompt and not a title. Do not use useless "Please choose..." constructions. Users
are clever enough to figure out they have to choose something... :)

• 拡張された説明文は、短い説明文を完備します。これでは、利用可能な選択肢に言及することがあり
ます。テンプレートが multiselectなものの場合、ユーザが選べる選択肢が 1つではないことについ
ても言及するかもしれません (インターフェイスが大抵これを明確にはしてくれますが)。

Note

• 短い説明文はタイトルとして扱われます。

• 拡張された説明文では、noteのより詳細な説明を表示します。フレーズで、簡潔過ぎない書き方です。

• Do not abuse debconf. Notes are the most common way to abuse debconf. As written in the debconf-
devel manual page: it's best to use them only for warning about very serious problems. The NEWS.Debian
or README.Debian files are the appropriate location for a lot of notes. If, by reading this, you consider
converting your Note type templates to entries in NEWS.Debian or README.Debian, please consider keeping
existing translations for the future.

6.6.4.3 Choicesフィールド

もし Choiseが頻繁に変わるようであれば、__Choicesという使い方をするのを検討してください。これは
個々の選択項目を単一の文字列に分割するので、翻訳作業者が作業を行うのを助けてくれると考えられて

います。

6.6. debconf による設定管理 83

Debian Developer’s Reference,リリース 14.3

6.6.4.4 Defaultフィールド

If the default value for a select template is likely to vary depending on the user language (for instance, if the choice
is a language choice), please use the _Default trick, documented in po-debconf 7.

This special field allows translators to put the most appropriate choice according to their own language. It will
become the default choice when their language is used while your own mentioned Default Choice will be used
when using English.

Do not use an empty default field. If you don't want to use default values, do not use Default at all.

If you use po-debconf (and you should; see 翻訳者へ丁寧に接する), consider making this field translatable, if
you think it may be translated.

genewebパッケージのテンプレートを例にとってみましょう:

Template: geneweb/lang

Type: select

__Choices: Afrikaans (af), Bulgarian (bg), Catalan (ca), Chinese (zh), Czech (cs),␣

↪→Danish (da), Dutch (nl), English (en), Esperanto (eo), Estonian (et), Finnish (fi),␣

↪→French (fr), German (de), Hebrew (he), Icelandic (is), Italian (it), Latvian (lv),␣

↪→Norwegian (no), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Spanish␣

↪→(es), Swedish (sv)

This is the default choice. Translators may put their own language here

instead of the default.

WARNING : you MUST use the ENGLISH NAME of your language

For instance, the French translator will need to put French (fr) here.

_Default: English[translators, please see comment in PO files]

_Description: Geneweb default language:

Note the use of brackets, which allow internal comments in debconf fields. Also note the use of comments, which
will show up in files the translators will work with.

The comments are needed as the _Default trick is a bit confusing: the translators may put in their own choice.

6.7 国際化
This section contains global information for developers to make translators' lives easier. More information for
translators and developers interested in internationalization are available in the Internationalisation and localisation
in Debian documentation.

6.7.1 debconfの翻訳を取り扱う

移植作業者同様に、翻訳作業者は難しい課題を抱えています。多くのパッケージについて作業を行い、多

くの異なったメンテナと共同作業をする必要があります。さらには、ほとんどの場合、彼らはネイティブ

な英語話者ではないので、あなたは特に忍耐強くあらねばいけないでしょう。

The goal of debconf was to make package configuration easier for maintainers and for users. Originally, trans-
lation of debconf templates was handled with debconf-mergetemplate. However, that technique is now depre-

84 第 6章パッケージ化のベストプラクティス

https://people.debian.org/~jfs/debconf6/html/
https://people.debian.org/~jfs/debconf6/html/

Debian Developer’s Reference,リリース 14.3

cated; the best way to accomplish debconf internationalization is by using the po-debconf package. This method
is easier both for maintainer and translators; transition scripts are provided.

po-debconf を使うと、翻訳は .poファイルに収められます (gettextによる翻訳技術からの引き出しで
す)。特別なテンプレートファイルには、元の文章と、どのフィールドが翻訳可能かがマークされています。
翻訳可能なフィールドの値を変更すると、debconf-updatepoを呼び出すことで、翻訳作業者の注意が必

要なように翻訳にマークがされます。そして、生成時には dh_installdebconfプログラムが、テンプレー

トに加え、最新の翻訳をバイナリパッケージに追加するのに必要となる魔法について、すべての面倒を見

ます。詳細は po-debconf 7マニュアルページを参照してください。

6.7.2 ドキュメントの国際化

ドキュメントの国際化はユーザにとって極めて重要ですが、多くの労力がかかります。この作業をすべて

除去する方法はありませんが、翻訳作業者を気楽にはできます。

どのようなサイズであれドキュメントをメンテナンスしている場合、翻訳作業者がソースコントロールシ

ステムにアクセスできるのであれば、彼らの作業が楽になるでしょう。翻訳作業者が、ドキュメントの 2
つのバージョン間の違いを見ることができるので、例えば、何を再翻訳すればいいのかがわかるようにな

ります。翻訳されたドキュメントは、翻訳作業がどのソースコントロールリビジョンをベースにしている

のかという記録を保持しておくことをお勧めします。debian-installerパッケージ中の doc-checkでは
興味深いシステムが提供されています。これは、翻訳すべき現在のリビジョンのファイルに対する構造化

されているコメントを使って、指定されたあらゆる言語の翻訳状況の概要を表示し、翻訳されたファイル

については、翻訳がベースにしているオリジナルのファイルのリビジョンを表示します。自分の VCS領域
でこれを導入して利用した方が良いでしょう。

If you maintain XML or SGML documentation, we suggest that you isolate any language-independent information
and define those as entities in a separate file that is included by all the different translations. This makes it much
easier, for instance, to keep URLs up to date across multiple files.

Some tools (e.g. po4a, poxml, or the translate-toolkit) are specialized in extracting the translatable material
from different formats. They produce PO files, a format quite common to translators, which permits seeing what
needs to be re-translated when the translated document is updated.

6.8 Best practices for debian/patches
Debian packages might suffer from bugs in the upstream code that you need to deal with. In the source format“3.0
(quilt)”patches are stored in debian/patches/ and automatically applied as listed in debian/patches/series
when the source package is unpacked.

Patches should be documented following DEP-3.

Several tools exist to automate managing the patches. If you manage a source package outside of any Git repository,
then your best option is likely quilt. Otherwise, you should consider to rely on Git's built-in features or on on the
git packaging helper that you use (if any). In particular, for packages using git-buildpackage, you should use
the gbp pq commands to manage the contents of the debian/patches/ directory.

A single patch can be created with e.g. git format-patch -1 d33286c from a single commit. Avoid using git
show as it lacks the full headers.

6.8. Best practices for debian/patches 85

https://salsa.debian.org/installer-team/installation-guide/blob/master/scripts/doc-check
https://dep-team.pages.debian.net/deps/dep3/

Debian Developer’s Reference,リリース 14.3

If the upstream fix is spread across multiple commits but makes sense to apply (and drop) in Debian as a sin-
gle patch, one could use a command such as git format-patch --stdout abc123..def456 > debian/

patches/... and append the Bug field only in the commit message of the first commit in the patch.

If one appends .patch to the url of a GitHub commit or Pull Request or GitLab commit or Merge Request, the
resulting patch file is using this same format (as if it were generated by git format-patch).

Remember to always append a Bug header to the patch description so that a reader can follow the link to see
where the bug was reported or patch submitted. If the purpose of the patch is to specifically divert from upstream
permanently, append the header Forwarded: not-needed to the end of the description.

6.9 パッケージ化に於ける一般的なシチュエーション

6.9.1 autoconf/automakeを使っているパッケージ

autoconf の config.subおよび config.guessを最新に保ちつづけるのは、移植作業者、特により移行

中の状況であるアーキテクチャの移植作業者にとって非常に重要です。autoconf や automakeを使うあ

らゆるパッケージについてのとても素晴らしいパッケージ化における教訓が autotools-devパッケージ

の /usr/share/doc/autotools-dev/README.Debian.gzにまとめられています。このファイルを読んで

書かれている推奨に従うことを強くお勧めします。

6.9.2 ライブラリ

ライブラリは様々な理由から常にパッケージにするのが難しいです。ポリシーは、メンテナンスに楽にし、

新しいバージョンが開発元から出た際にアップグレードを可能な限りシンプルであることを確保するため、

多くの制約を課しています。ライブラリでの破損は、依存している何十ものパッケージの破損を招き得ます。

Good practices for library packaging have been grouped in the library packaging guide.

6.9.3 ドキュメント化

ドキュメント化のポリシーに忘れず従ってください。

あなたのパッケージが XMLや SGMLから生成されるドキュメントを含んでいる場合、XMLや SGMLの
ソースをバイナリパッケージに含めてリリースしないことをお勧めします。ユーザがドキュメントのソー

スを欲しい場合には、ソースパッケージを引っ張ってくれば良いのです。

ポリシーではドキュメントは HTML形式でリリースされるべきであると定めています。我々は、もし手が
かからないで問題ない品質の出力が可能であれば、ドキュメントを PDF形式とテキスト形式でもリリース
することをお勧めしています。ですが、ソースの形式が HTMLのドキュメントを普通のテキスト版でリ
リースするのは、大抵の場合は適切ではありません。

リリースされたメジャーなマニュアルは、インストール時に doc-baseで登録されるべきです。詳細につ

いては、doc-baseパッケージのドキュメントを参照してください。

Debianポリシー (12.1章)では、マニュアルページはすべてのプログラム・ユーティリティ・関数に対して
付属すべきであり、設定ファイルのようなその他のものについては付属を提案を示しています。もし、あ

なたがパッケージングをしているものがそのようなマニュアルページを持っていない場合は、パッケージ

に含めるために記述を行い、開発元 (upstream)へ送付することを検討してください。

86 第 6章パッケージ化のベストプラクティス

https://www.netfort.gr.jp/~dancer/column/libpkg-guide/libpkg-guide.html
https://www.debian.org/doc/debian-policy/ch-docs.html

Debian Developer’s Reference,リリース 14.3

The manpages do not need to be written directly in the troff format. Popular source formats are DocBook, POD
and reST, which can be converted using xsltproc, pod2man and rst2man respectively. To a lesser extent, the
help2man program can also be used to write a stub.

6.9.4 特定の種類のパッケージ

いくつかの特定の種類のパッケージは、特別なサブポリシーと対応するパッケージ化ルールおよびプラク

ティスを持っています:

• Perl related packages have a Perl policy; some examples of packages following that policy are
libdbd-pg-perl (binary perl module) or libmldbm-perl (arch independent perl module).

• Python related packages have their Python policy; see /usr/share/doc/python/python-policy.txt.
gz in the python package.

• Emacs関連パッケージには、emacsポリシーがあります。

• Java関連パッケージには、javaポリシーがあります。

• OCaml related packages have their own policy, found in /usr/share/doc/ocaml/

ocaml_packaging_policy.gz from the ocaml package. A good example is the camlzip source
package.

• XMLや SGML DTDを提供しているパッケージは、sgml-base-docパッケージ中の推奨に従わねば
なりません。

• lispパッケージは、パッケージ自身を common-lisp-controllerに登録する必要があります。これに

ついては、/usr/share/doc/common-lisp-controller/README.packagingを参照してください。

• Rust packaging is described in the Debian Rust Team Book;.

6.9.5 アーキテクチャ非依存のデータ

大量のアーキテクチャ非依存データがプログラムと共にパッケージ化されるのは、良くあることではあり

ません。例えば、音声ファイル、アイコン集、様々な模様の壁紙、その他一般的な画像ファイルです。この

データのサイズがパッケージの残りのサイズと比較して取るに足らないのであれば、おそらくは単一パッ

ケージでひとまとめにしておくのがベストでしょう。

However, if the size of the data is considerable, consider splitting it out into a separate, architecture-independent
package (_all.deb). By doing this, you avoid needless duplication of the same data into ten or more .debs, one
per each architecture. While this adds some extra overhead into the Packages files, it saves a lot of disk space on
Debian mirrors. Separating out architecture-independent data also reduces processing time of lintian (seeパッ
ケージチェック (lint)用ツール) when run over the entire Debian archive.

6.9.6 ビルド中に特定のロケールが必要

ビルド中に特定のロケールを必要とする場合、こんな技を使えば一時ファイルを作成できます:

LOCPATHを /usr/lib/localeと同等のものに、そして LC_ALLを生成したロケールの名前に設定すれば、

rootにならなくても欲しいものが手に入ります。こんな感じです:

6.9. パッケージ化に於ける一般的なシチュエーション 87

https://www.debian.org/doc/packaging-manuals/perl-policy/
https://www.debian.org/doc/packaging-manuals/debian-emacs-policy
https://www.debian.org/doc/packaging-manuals/java-policy/
https://rust-team.pages.debian.net/book/

Debian Developer’s Reference,リリース 14.3

LOCALE_PATH=debian/tmpdir/usr/lib/locale

LOCALE_NAME=en_IN

LOCALE_CHARSET=UTF-8

mkdir -p $LOCALE_PATH

localedef -i $LOCALE_NAME.$LOCALE_CHARSET -f $LOCALE_CHARSET $LOCALE_PATH/$LOCALE_

↪→NAME.$LOCALE_CHARSET

Using the locale

LOCPATH=$LOCALE_PATH LC_ALL=$LOCALE_NAME.$LOCALE_CHARSET date

6.9.7 移行パッケージを deboprhanに適合するようにする

deborphanは、どのパッケージがシステムから安全に削除できるか、ユーザが検出するのを助けてくれるプ
ログラムです;すなわち、どのパッケージも依存していないものです。デフォルトの動作は、使われていな
いライブラリを見つけ出すために libsと oldlibsセクションからのみ検索を行います。ですが、正しい引数
を渡せば、他の使われていないパッケージを捕らえようとします。

For example, with --guess-dummy, deborphan tries to search all transitional packages which were needed for
upgrade but which can now be removed. For that, it currently looks for the string dummy or transitional in their
short description, though it would be better to search for both strings, as there are some dummy or transitional
packages, which have other purposes.

ですので、あなたがそのようなパッケージを作る際には、 transitional dummy packageを短い説明文

に必ず追加してください。例を探す場合は、以下を実行してください: apt-cache search .|grep dummy

または apt-cache search .|grep transitional

Also, it is recommended to adjust its section to oldlibs and its priority to optional in order to ease deborphan's
job.

6.9.8 .orig.tar.{gz,bz2,xz}についてのベストプラクティス

オリジナルのソース tarball には 2 種類あります: 手が入れられていない素のソース (Pristine source) と再
パッケージした開発元のソース (repackaged upstream source)です。

6.9.8.1 手が入れられていないソース (Pristine source)

素のソース tarball (pristine source tarball)の特徴の定義は、.orig.tar.{gz,bz2,xz}は、開発元の作者に

よって公式に配布された tarballと 1バイトたりとも違わない、というものです。1 これは、Debian diff内
に含まれている Debianバージョンと開発元のバージョン間のすべての違いを簡単に比較するのにチェック
サムを使えるようになります。また、オリジナルのソースが巨大な場合、既に upstreamの tarballを持って
いる upstreamの作者と他の者は、あなたのパッケージを詳細に調査したい場合、ダウンロード時間を節約
できます。

1 We cannot prevent upstream authors from changing the tarball they distribute without also incrementing the version number, so there
can be no guarantee that a pristine tarball is identical to what upstream currently distributing at any point in time. All that can be expected
is that it is identical to something that upstream once did distribute. If a difference arises later (say, if upstream notices that they weren't
using maximal compression in their original distribution and then re-gzip it), that's just too bad. Since there is no good way to upload a new
.orig.tar.{gz,bz2,xz} for the same version, there is not even any point in treating this situation as a bug.

88 第 6章パッケージ化のベストプラクティス

Debian Developer’s Reference,リリース 14.3

There are no universally accepted guidelines that upstream authors follow regarding the directory structure inside
their tarball, but dpkg-source is nevertheless able to deal with most upstream tarballs as pristine source. Its
strategy is equivalent to the following:

1. 以下のようにして空の一時ディレクトリに tarballを展開します

zcat path/to/packagename_upstream-version.orig.tar.gz | tar xf -

2. もし、この後で、一時ディレクトリが 1つのディレクトリ以外含まず他にどのファイルも無い場合、
dpkg-source はそのディレクトリを パッケージ名-開発元のバージョン (.orig) にリネームします。
tarball中の最上位のディレクトリ名は問題にはされず、忘れられます。

3. それ以外の場合、upstreamの tarballは共通の最上位ディレクトリ無しでパッケージされなくてはい
けません (upstreamの作者よ、恥を知りなさい!)。この場合、dpkg-sourceは一時ディレクトリその

ものをパッケージ名-開発元のバージョン (.orig)へリネームします。

6.9.8.2 upstreamのソースをパッケージしなおす

パッケージは手が入っていない素のソース tarballと共にアップロードすべきですが、それが可能ではない
場合が色々とあります。upstreamがソースを gzip圧縮した tarballを全く配布していない場合や、upstream
の tarballが DFSG-freeではない、あなたがアップロード前に削除しなければならない素材を含んでいる場
合がこれにあたります。

この様な場合、開発者は適切な .orig.tar.{gz,bz2,xz}ファイルを自身で準備する必要があります。こ

の様な tarballを、再パッケージした開発元のソース (repackaged upstream source)と呼びます。再パッケー
ジした開発元のソースでは Debianネイティブパッケージとは違うことに注意してください。再パッケージ
したソースは、Debian固有の変更点は分割された .diff.gzまたは .debian.tar.{gz,bz2,xz}のままで

あり、バージョン番号は開発元のバージョンと debianリビジョンから構成されたままです。

開発元が、原則的にはそのままの形で使える .tar.{gz,bz2,xz}を配布していたとしても再パッケージを

したくなるという場合がありえます。最も明解なのは、tarアーカイブを再圧縮することや upstreamのアー
カイブから純粋に使われていないゴミを削除することで、非常に容量を節約できる時です。ここで慎重に

なって頂きたいのですが、ソースを再パッケージする場合は、決定を貫く用意をしてください。

パッケージしなおした .orig.tar.{gz,bz2,xz}では、

1. should be documented in the resulting source package. Detailed information on how the repackaged source
was obtained, and on how this can be reproduced should be provided in debian/copyright, ideally in a way
that can be done automatically with uscan. If that really doesn't work, at least provide a get-orig-source
target in your debian/rules file that repeats the process, even though that was actually deprecated in the
4.1.4 version of the Debian policy.

2. 開発元の作者由来ではないファイルや、あなたが内容を変更したファイルを含めるべきではありませ
ん。2

3. 法的理由から不可能であるものを除いて、開発元の作者が提供しているビルドおよび移植作業環境を
完全に保全すべきです。例えば、ファイルを省略する理由としてMS-DOSでのビルドにしか使われ
ないから、というのは十分な理由にはなりません。同様に、開発元から提供されている Makefileを

2 As a special exception, if the omission of non-free files would lead to the source failing to build without assistance from the Debian diff,
it might be appropriate to instead edit the files, omitting only the non-free parts of them, and/or explain the situation in a README.source file
in the root of the source tree. But in that case please also urge the upstream author to make the non-free components easier to separate from
the rest of the source.

6.9. パッケージ化に於ける一般的なシチュエーション 89

https://manpages.debian.org/uscan.1
https://www.debian.org/doc/debian-policy/upgrading-checklist.html#version-4-1-4

Debian Developer’s Reference,リリース 14.3

省略すべきではありません。たとえ debian/rulesが最初にすることが configureスクリプトを実行
してそれを上書きすることであったとしても、です。

(理由: Debian以外のプラットフォームのためにソフトウェアをビルドする必要がある Debianユー
ザが、開発元の一次配布先を探そうとせずに Debianミラーからソースを取得する、というのは普通
です)。

4. may use packagename-upstream-version+dfsg (or any other suffix which is added to the tarball name) as
the name of the top-level directory in its tarball. This makes it possible to distinguish pristine tarballs from
repackaged ones.

5. xzあるいは gzipあるいは bzipで最大限圧縮されるべきです。

6.9.8.3 バイナリファイルの変更

Sometimes it is necessary to change binary files contained in the original tarball, or to add binary files that are not
in it. This is fully supported when using source packages in“3.0 (quilt)” format; see the dpkg-source1 manual
page for details. When using the older format“1.0”, binary files can't be stored in the .diff.gz so you must
store a uuencoded (or similar) version of the file(s) and decode it at build time in debian/rules (and move it in
its official location).

6.9.9 デバッグパッケージのベストプラクティス

A debug package is a package that contains additional information that can be used by gdb. Since Debian bina-
ries are stripped by default, debugging information, including function names and line numbers, is otherwise not
available when running gdb on Debian binaries. Debug packages allow users who need this additional debugging
information to install it without bloating a regular system with the information.

The debug packages contain separated debugging symbols that gdb can find and load on the fly when debugging
a program or library. The convention in Debian is to keep these symbols in /usr/lib/debug/path, where path
is the path to the executable or library. For example, debugging symbols for /usr/bin/foo go in /usr/lib/

debug/usr/bin/foo, and debugging symbols for /usr/lib/libfoo.so.1 go in /usr/lib/debug/usr/lib/
libfoo.so.1.

6.9.9.1 Automatically generated debug packages

Debug symbol packages can be generated automatically for any binary package that contains executable binaries,
and except for corner cases, it should not be necessary to use the old manually generated ones anymore. The
package name for a automatic generated debug symbol package ends in -dbgsym.

The dbgsym packages are not installed into the regular archives, but in dedicated archives. That means, if you
need the debug symbols for debugging, you need to add this archives to your apt configuration and then install the
dbgsym package you are interested in. Please read https://wiki.debian.org/HowToGetABacktrace on how to do
that.

90 第 6章パッケージ化のベストプラクティス

https://wiki.debian.org/HowToGetABacktrace

Debian Developer’s Reference,リリース 14.3

6.9.9.2 Manual -dbg packages

Before the advent of the automatic dbgsym packages, debug packages needed to be manually generated. The
name of a manual debug packages ends in -dbg. It is recommended to migrate such old legacy packages to
the new dbgsym packages whenever possible. The procedure to convert your package is described in https://
wiki.debian.org/AutomaticDebugPackages but the gist is to use the --dbgsym-migration='pkgname-dbg (<<

currentversion~)' switch of the dh_strip command.

However, sometimes it is not possible to convert to the new dbgsym packages, or you will encounter the old manual
-dbg packages in the archives, so you might need to deal with them. It is not recommended to create manual -dbg
packages for new packages, except if the automatic ones won't work for some reason.

One reason could be that debug packages contains an entire special debugging build of a library or other binary.
However, usually separating debugging information from the already built binaries is sufficient and will also save
space and build time.

This is the case, for example, for debugging symbols of Python extensions. For now the right way to package Python
extension debug symbols is to use -dbg packages as described in https://wiki.debian.org/Python/DbgBuilds.

To create -dbg packages, the package maintainer has to explicitly specify them in debian/control.

The debugging symbols can be extracted from an object file using objcopy --only-keep-debug. Then the ob-
ject file can be stripped, and objcopy --add-gnu-debuglink used to specify the path to the debugging symbol
file. objcopy 1 explains in detail how this works.

デバッグパッケージは、そのパッケージがデバッグシンボルを提供するパッケージに依存する必要があり、

この依存関係はバージョン指定が必要であるということに注意してください。以下のような例になります:

Depends: libfoo (= ${binary:Version})

The dh_strip command in debhelper supports creating debug packages, and can take care of using objcopy to
separate out the debugging symbols for you. If your package uses debhelper/9.20151219 or newer, you don't
need to do anything. debhelper will generate debug symbol packages (as package-dbgsym) for you with no
additional changes to your source package.

6.9.10 メタパッケージのベストプラクティス

メタパッケージは、時間がかかる一貫したセットのパッケージをインストールするのを楽にしてくれる、ほぼ

空のパッケージです。そのセットの全パッケージに依存することで、これを実現しています。APTの力のおか
げで、メタパッケージのメンテナは依存関係を調整すればユーザのシステムが自動的に追加パッケージを得る

ことができます。自動的にインストールされていてメタパッケージから落とされたパッケージは、削除候補と

してマークされます (そして aptitudeによって自動的に削除もされます)。gnomeと linux-image-amd64

は、メタパッケージの 2つの例です (ソースパッケージ meta-gnome2 and linux-latestから生成されて

います)。

The long description of the meta-package must clearly document its purpose so that the user knows what they
will lose if they remove the package. Being explicit about the consequences is recommended. This is particularly
important for meta-packages that are installed during initial installation and that have not been explicitly installed
by the user. Those tend to be important to ensure smooth system upgrades and the user should be discouraged
from uninstalling them to avoid potential breakages.

6.9. パッケージ化に於ける一般的なシチュエーション 91

https://wiki.debian.org/AutomaticDebugPackages
https://wiki.debian.org/AutomaticDebugPackages
https://wiki.debian.org/Python/DbgBuilds

93

第7章 パッケージ化、そして…

Debianは、単にソフトウェアのパッケージを作ってメンテナンスをしているだけではありません。この章
では、単にパッケージを作ってメンテナンスする以外で Debianへ協力・貢献するやり方、多くの場合とて
も重要となるやり方の情報を取り扱います。

ボランティア組織の例にたがわず、Debianの活動はメンバーが何をしたいのか、時間を割くのに最も重大
だと思われることが何か、というメンバーの判断に依っています。

7.1 バグ報告
我々としては、Debianパッケージで見つけたバグを登録することを勧めています。実際のところ、大抵の
場合は Debian開発者が第一線でのテスト作業者となっています。他の開発者のパッケージで見つけたバグ
を報告することで Debianの品質が向上されています。

Debianバグ追跡システム (BTS)のバグ報告のやり方について (instructions for reporting bugs)を参照してく
ださい。

いつも使っているメールを受け取れるユーザアカウントからバグを送ってみてください。そうすることで、

開発者がそのバグに関するより詳細な情報を必要とする場合にあなたに尋ねることができます。rootユー
ザでバグを報告しないでください。

バグを報告するには、reportbug 1のようなツールが使えます。これによって作業を自動化し、かなり簡単
なものにできます。

パッケージに対して既にバグが報告されていないことを確認しておいてください。個々のパッケージに対

するバグのリストは https://bugs.debian.org/パッケージ名にて簡単に確認できます。querybts 1のよ
うなユーティリティでもこの情報を入手できます (なお、reportbugでは大抵の場合、バグを送信する前

に querybtsの実行も行っています)。

正しい所にバグを報告する様に心がけてください。例えばあるパッケージが他のパッケージのファイルを

上書きしてしまうバグの場合ですが、バグ報告が重複して登録されるのを避けるため、これらのパッケー

ジの両方のバグリストを確認してください。

さらに言うと、他のパッケージについても、何度も報告されているバグをマージしたり既に修正されてい

るバグに「fixed」タグをつけたりすることもできます。そのバグの報告者であったりパッケージメンテナ
ではない場合は (メンテナから許可をもらっていなければ)、実際にバグをクローズしてはいけないことに
注意してください。

時折、あなたが登録したバグ報告について何が起こっているのかをチェックしたくなることでしょう。こ

れは、もう再現できないものをクローズするきっかけになります。報告した全てのバグ報告を確認するに

は、https://bugs.debian.org/from:your-email-addr を参照すればいいだけです。

https://www.debian.org/Bugs/
https://www.debian.org/Bugs/Reporting

Debian Developer’s Reference,リリース 14.3

7.1.1 一度に大量のバグを報告するには (mass bug filing)

大量の異なるパッケージに対して、同じ問題についての非常に多くのバグ (例えば 10個以上)を報告するの
は、推奨されていないやり方です。不要なバグ報告を避けるため、可能な限りの手続きを踏むようにしま

しょう。例えば、問題の確認を自動化できる場合は lintianに新しくチェック項目を追加すれば、エラー

や警告が明確になります。

同じ問題について一度に 10個以上のバグを報告する場合は、バグ報告を登録する前に debian-devel@lists.

debian.orgへ送ることをお勧めします。バグ報告を送る前に注意点を記述し、メールのサブジェクトに

事実を挙げておきます。これで他の開発者がそのバグが本当に問題であるかどうかを確認できるようにな

ります。さらに、これによって複数のメンテナが平行して同じバグ報告を登録するのを防止できるように

なります。

dd-listプログラムを利用することと、明確になっているのであれば影響を受けるパッケージのリストを

(devscriptsパッケージの) whodependsを使って出力して、debian-devel@lists.debian.orgへのメー
ルに含めて下さい。

同じサブジェクトで大量のバグを送信する際は、バグ報告がバグ情報用メーリングリストへ転送されない

ように　 maintonly@bugs.debian.orgへバグ報告を送るべきであるの注意してください。

The program mass-bug (from the package devscripts) can be used to file bug reports against a list of packages.

7.1.1.1 Usertag

多数のパッケージに対するバグを登録する際に BTSの usertagを使いたくなるかもしれません。usertagは
'patch'や 'wishlist'のような通常のタグに似ていますが、ユーザが定義する事と特定のユーザに対して一意
な名前空間を占めるという点で違っています。これによって、同じバグについて衝突する事無しに、開発

者がそれぞれ別のやり方で複数の設定ができるようになります。

バグを登録する際に usertagを追加するには、擬似ヘッダ (pseudo-header) Userと Usertagsを指定します。

To: submit@bugs.debian.org

Subject: title-of-bug

Package: pkgname

[...]

User: email-addr

Usertags: tag-name [tag-name ...]

description-of-bug ...

Note that tags are separated by spaces and cannot contain underscores. If you are filing bugs for a particular group
or team it is recommended that you set the User to an appropriate mailing list after describing your intention there.

特定の usertag でバグを参照する場合は https://bugs.debian.org/cgi-bin/pkgreport.cgi?

users=メールアドレス&tag=タグ名を指定してください。

94 第 7章パッケージ化、そして…

Debian Developer’s Reference,リリース 14.3

7.2 品質維持の努力

7.2.1 日々の作業

品質保証に割り当てられたグループの人々がいたとしても、QA作業は彼らのみに課せられるものではあり
ません。あなたもパッケージを可能な限りバグが無いように保ち、できるだけ lintian cleanな状態 (lintian
を参照)にすることで品質保証の作業に参加することができるのです。それが可能ではないように思えるな
ら、パッケージをいくつか「放棄 (orphan)」してください (パッケージを放棄する参照)。または、溜まった
バグ処理に追いつくため、他の人々に助力を願い出ることも可能です (debian-qa@lists.debian.orgや
debian-devel@lists.debian.orgで助けを求めることができます)。同時に共同メンテナ (co-maintainer)
を探すことも可能です (共同メンテナンスを参照してください)。

7.2.2 バグ潰しパーティ (BSP)

From time to time the QA group organizes bug squashing parties to get rid of as many problems as possible. They
are announced on debian-devel-announce@lists.debian.org and the announcement explains which area
will be the focus of the party: usually they focus on release critical bugs but it may happen that they decide to help
finish a major upgrade (like a new perl version that requires recompilation of all the binary modules).

The rules for non-maintainer uploads differ during the parties because the announcement of the party is considered
prior notice for NMU. If you have packages that may be affected by the party (because they have release critical
bugs for example), you should send an update to each of the corresponding bug to explain their current status and
what you expect from the party. If you don't want an NMU, or if you're only interested in a patch, or if you will
deal with the bug yourself, please explain that in the BTS.

People participating in the party have special rules for NMU; they can NMU without prior notice if they upload
their NMU to DELAYED/3-day at least. All other NMU rules apply as usual; they should send the patch of the
NMU to the BTS (to one of the open bugs fixed by the NMU, or to a new bug, tagged fixed). They should also
respect any particular wishes of the maintainer.

NMUをする自信が無い場合は、BTSへパッチを投げるだけにしてください。NMUでパッケージを壊して
しまうより、遥かに良いことです。

7.3 他のメンテナに連絡を取る
Debianと共に過ごす間、様々な理由で他のメンテナに連絡を取りたくなることでしょう。関連パッケージ
間での共同作業の新たなやり方について協議したい場合や、開発元で自分が使いたい新しいバージョンが

利用可能になっていることを単に知らせたい場合などです。

パッケージメンテナのメールアドレスを探しだすのは骨が折れます。幸いな事に、パッケージ名@packages.

debian.orgというシンプルなメールのエイリアスがあり、メンテナらの個人アドレスが何であれメンテ

ナへメールを届ける手段となっています。パッケージ名はパッケージのソース名かバイナリパッケージ名

に置き換えてください。

Debianパッケージトラッカー経由でソースパッケージの購読を行っている人に連絡を取りたくなるかもし
れません。その場合はパッケージ名@packages.qa.debian.orgメールアドレスが使えます。

7.2. 品質維持の努力 95

Debian Developer’s Reference,リリース 14.3

7.4 活動的でない、あるいは連絡が取れないメンテナに対応する
If you notice that a package is lacking maintenance, you should make sure that the maintainer is active and will
continue to work on their packages. It is possible that they are not active anymore, but haven't registered out of the
system, so to speak. On the other hand, it is also possible that they just need a reminder.

Missing In Action (行方不明)だと考えられているメンテナについての情報が記録されるシンプルなシステ
ム (MIAデータベース)があります。品質保証グループ (QAグループ)のメンバーが活動的ではないメンテ
ナに連絡を取った場合や、そのメンテナについて新たな情報がもたらされた場合、その記録がMIAデータ
ベースに残されます。このシステムは qa.debian.orgホスト上の /org/qa.debian.org/miaで利用可能

になっており、mia-queryツールで検索ができます。どうやってデータベースを検索するのかについては

mia-query --helpと入力してください。活動的ではないメンテナについての情報がまだ記録されていな

い、あるいはそのメンテナについての情報を追加できる場合は、おおよそ以下の手続きを行う必要があり

ます。

最初の一歩はメンテナに丁寧にコンタクトを取り、応答するのに充分な時間待つことです。充分な時間と

いうのを定義するのは非常に困難ですが、実生活では時折非常に多忙になるのを考慮に入れると重要なこ

とです。一つのやり方としては、リマインダーを二週間後に送るという方法があります。

A non-functional e-mail address is a violation of Debian Policy. If an e-mail "bounces", please file a bug against
the package and submit this information to the MIA database.

メンテナが４週間 (１ヶ月）応答をしない場合、おそらく反応がないと判断できます。この様な場合はよ
り詳細に確認し、可能な限り問題となっているメンテナに関する有用な情報をかき集める必要があります。

これには以下のようなものが含まれています。

• 開発者 LDAPデータベースを通じて得られる echelon情報は、開発者が最後に Debianメーリング
リストに投稿したはいつなのかを示します (これには debian-devel-changes@lists.debian.org

での配布物のアップロードのメールも含まれます)。また、データベースでメンテナが休暇中かどう
かも確認してください

• このメンテナが対応しているパッケージ数やパッケージの状態。特に、長期間放置され続けている
RCバグがあるかどうか? さらに通常どの程度の数のバグがあるか? もう一つの重要な情報はパッケー
ジが NMUされているかどうか、されているとしたら誰によって行われているか、です。

• Debian以外でメンテナの活動があるかどうか? 例えば、近頃 Debian以外のメーリングリストや news
グループへの投稿をしているなど。

パッケージがスポンサーされている、つまりメンテナが公式の Debian開発者ではない場合はちょっとした
問題となります。例えば echelonの情報は、スポンサーされている人は利用できません。そのため実際に

パッケージをアップロードした Debian開発者を探して確認を取る必要があります。彼らがパッケージにサ
インしたということは、アップロードについて何であれ責任を持ち、スポンサーした人に何が起こってい

るかを知っていそうだということです。

debian-devel@lists.debian.orgに、活動が見えないメンテナの居所に誰か気づいているかという質問

を投稿するのもありです。問題の人を Cc: に入れてください。

ここに書かれた全てを収集したなら、mia@qa.debian.orgに連絡しましょう。この名前の宛先を担当して

いる人は、あなたが供給した情報を使ってどう進めるかを判断します。例えば、そのメンテナのパッケージ

の一部または全てを放棄 (Orphan)するかもしれません。パッケージが NMUされていた場合は、パッケー
ジを放棄 (Orphan)する前に NMUをした人に連絡する事を選ぶかもしれません̶ NMUをした人はきっと
パッケージに関心があるでしょうから。

96 第 7章パッケージ化、そして…

https://www.debian.org/doc/debian-policy/ch-binary.html#the-maintainer-of-a-package
https://db.debian.org/

Debian Developer’s Reference,リリース 14.3

最後に一言: 礼儀正しく振る舞いましょう。我々は所詮ボランティアで、全ての時間を Debianに捧げられ
るわけではありません。また、関わっている人の状況がわかるわけでもありません。重い病気にかかって

いるかかもしれないし、あるいは死んでしまっているかもしれません -メッセージを受け取る側にどんな
人がいるかは分かりません。亡くなった方のご親戚の方がメールを読んだ場合に、非常に無礼で怒った叱

責調のメッセージを見つけてどうお感じになるかを想像してください。

On the other hand, although we are volunteers, a package maintainer has made a commitment and therefore has
a responsibility to maintain the package. So you can stress the importance of the greater good̶ if a maintainer
does not have the time or interest anymore, they should let go and give the package to someone with more time
and/or interest.

If you are interested in working on the MIA team, please have a look at the README file in /org/qa.debian.

org/mia on qa.debian.org, where the technical details and the MIA procedures are documented, and contact
mia@qa.debian.org.

7.5 Debian開発者候補に対応する
Debianの成功は新たな才能あるボランティアをどう魅了し確保するかにかかっています。あなたが経験豊
かな開発者なら、新たな開発者を呼び込むプロセスに関与するべきです。このセクションでは新たな開発

者候補者をどうやって手助けするのかについて記述します。

7.5.1 パッケージのスポンサーを行う

パッケージのスポンサーをするというのは、パッケージをアップロードする権限をもたないメンテナーの

ためにかわりにアップロードするということです。アップロードを軽く考えてはなりません。スポンサー

はパッケージを検証し、Debianに含まれるのにふさわしい高水準の品質であることを担保すべきです。

Debian開発者はパッケージをスポンサーできます。Debianメンテナはできません。

パッケージのスポンサー作業の流れは以下の通りです:

1. メンテナーはソースパッケージ (.dsc)を準備し、オンラインで参照できるどこかにアップロード (例
えば mentors.debian.net)や他のどこか適切な場所にアップロードし、パッケージをメンテナンスして
いる公開されている VCSリポジトリ (salsa.debian.org: Git repositories and collaborative development
platformを参照)を示します。

2. スポンサーはソースパッケージをダウンロード (もしくはチェックアウト)します。

3. スポンサーはソースパッケージをレビューします。問題を見つけたら、メンテナに知らせて修正版を
くれるように尋ねます (作業は step 1へやり直しされます)。

4. スポンサーは、何も問題が残っているのを見つけられませんでした。パッケージをビルドし、署名
し、Debianへアップロードします。

どのようにパッケージをスポンサーするのかの詳細を掘り下げるまえに、提案されているパッケージを

Debianに追加するメリットがあるのかを問うべきです。

この質問に答えるシンプルなルールは存在しません。様々な要素に依存しうるからです。アップストリー

ムのコードが十分枯れており、脆弱性がまったくないか? 同じようなことができるパッケージがすでにパッ
ケージ化されていないだろうか? そして新しいパッケージはそれらと比較してどんな違いがあるだろうか?

7.5. Debian開発者候補に対応する 97

https://mentors.debian.net/cgi-bin/welcome

Debian Developer’s Reference,リリース 14.3

新しいパッケージはユーザーの要望があるだろうか? どれくらいのユーザー数がいるだろうか? アップス
トリームの開発者はどれくらい精力的に活動しているだろうか?

それから、メンテナ候補者が良いメンテナになるであろうことを保証する必要があります。他のパッケー

ジでの経験がありますか? そうであれば、良い仕事をしていますか (バグを確認している)? パッケージと
使われているプログラミング言語について詳しいですか? そのパッケージに必要なスキルを持っています
か? そうでなければ、学ぶことが可能でしょうか?

Debian についてどのような立ち位置にあるかを知るのもよいでしょう: 彼らは Debian の哲学に同意し、
Debian コミュニティーへ参加するつもりがあるでしょうか? Debian メンバーになることは簡単なので、
Debianメンバーになろうと思っている人だけをスポンサーしたいことでしょう。そのようにすれば無期限
にスポンサーとして活動する必要がないことが最初からわかります。

7.5.1.1 新しいパッケージのスポンサーを行う

New maintainers usually have certain difficulties creating Debian packages̶ this is quite understandable. They
will make mistakes. That's why sponsoring a brand new package into Debian requires a thorough review of the
Debian packaging. Sometimes several iterations will be needed until the package is good enough to be uploaded
to Debian. Thus being a sponsor implies being a mentor.

レビューをせずに新しいパッケージのスポンサーをしないでください。ftpmasterによる新しいパッケージ
のレビューは、主にソフトウェアが本当にフリーなものであるかを確認するためです。もちろん、パッケー

ジ化に関する問題に偶然気づくことはありますが、それを期待すべきではありません。アップロードされ

たパッケージが、Debianフリーソフトウェアガイドラインに適合し、良い品質であるのを保証するのは、
あなたの仕事です。

パッケージをビルドし、ソフトウェアのテストを行うのはレビューの一部ではありますが、それだけでは

十分ではありません。この章の残りの部分では、レビューでチェックするポイントの一覧を述べます (徹底
的なものではありません)。1

• upstreamの tarballとして提供されているものが、upstreamの作者が配布しているものと同じかどう
かを確認する (ソースが Debian用に再パッケージされている場合、修正した tarballを自分自身で生
成する)。

• Run lintian (see lintian). It will catch many common problems. Be sure to verify that any lintian

overrides set up by the maintainer are fully justified.

• licensecheck(devscriptsの一部)を実行し、debian/copyrightが正しく、そして完全な事を確認す
る。ライセンス問題を探してください (頭に“All rights reserved”とあるファイルや、DFSGに適合
しないライセンスがあるなど)。この作業には、grep -riが助けとなることでしょう。

• ビルドの依存関係が完全であるのを保証するため、パッケージを pbuilder (やその他類似のツール)
でビルドする (pbuilder 参照)。

• debian/controlを査読する: ベストプラクティスに従っている? (debian/controlのベストプラクティ
ス参照)依存関係は完璧ですか?

• debian/rulesを査読する: ベストプラクティスに従っている? (debian/rulesについてのベストプラ
クティス参照)改善可能な点がある?

1 You can find more checks in the wiki, where several developers share their own sponsorship checklists.

98 第 7章パッケージ化、そして…

https://wiki.debian.org/SponsorChecklist

Debian Developer’s Reference,リリース 14.3

• メンテナスクリプト (preinst, postinst, prerm, postrm, config) を査読する: 依存関係がインス
トールされていない時でも動作する? 全てのスクリプトが等羃 (idempotent、すなわち、問題無しに
複数回実行できる)?

• 開発元のファイルに対する変更 (.diff.gz、debian/patches/、あるいは直接 debian tarballに埋め
込まれているバイナリファイル)をレビューする。十分な根拠がありますか? (パッチに対し、DEP-3
に沿って)正しくドキュメント化されている?

• すべてのファイルについて、そのファイルが何故そこにあるのか、望んでいる結果をもたらすために
それが正しいやり方かどうかを自身に問いかけてください。メンテナはパッケージ化のベストプラ

クティスに従っていますか? (パッケージ化のベストプラクティス参照)

• Build the packages, install them and try the software. Ensure that you can remove and purge the packages.
Maybe test them with piuparts.

If the audit did not reveal any problems, you can build the package and upload it to Debian. Remember that even if
you're not the maintainer, as a sponsor you are still responsible for what you upload to Debian. That's why you're
encouraged to keep up with the package through Debianパッケージトラッカー.

Note that you should not need to modify the source package to put your name in the changelog or in the control
file. The Maintainer field of the control file and the changelog should list the person who did the packaging,
i.e. the sponsee. That way they will get all the BTS mail.

Instead, you should instruct dpkg-buildpackage to use your key for the signature. You do that with the -k option:

dpkg-buildpackage -kKEY-ID

debuildと debsignを使う場合は、~/.devscriptsに設定を決め打ちで書いても構いません:

DEBSIGN_KEYID=KEY-ID

7.5.1.2 既存パッケージの更新をスポンサーする

You will usually assume that the package has already gone through a full review. So instead of doing it again, you
will carefully analyze the difference between the current version and the new version prepared by the maintainer.
If you have not done the initial review yourself, you might still want to have a deeper look just in case the initial
reviewer was sloppy.

To be able to analyze the difference, you need both versions. Download the current version of the source package
(with apt-get source) and rebuild it (or download the current binary packages with aptitude download).
Download the source package to sponsor (usually with dget).

Read the new changelog entry; it should tell you what to expect during the review. The main tool you will use is
debdiff (provided by the devscripts package); you can run it with two source packages (.dsc files), or two
binary packages, or two .changes files (it will then compare all the binary packages listed in the .changes).

ソースパッケージを比較した場合 (新しい開発元のバージョンの場合には、例えば debdiff の出力を

filterdiff -i '*/debian/*' などとして、開発元のファイルを除外します)、確認したすべての変更
点を理解して、この変更点が Debianの changelogに正しく記載されている必要があります。

If everything is fine, build the package and compare the binary packages to verify that the changes on the source
package have no unexpected consequences (some files dropped by mistake, missing dependencies, etc.).

7.5. Debian開発者候補に対応する 99

https://dep-team.pages.debian.net/deps/dep3/

Debian Developer’s Reference,リリース 14.3

You might want to check out the Package Tracking System (see Debianパッケージトラッカー) to verify if the
maintainer has not missed something important. Maybe there are translation updates sitting in the BTS that could
have been integrated. Maybe the package has been NMUed and the maintainer forgot to integrate the changes from
the NMU into their package. Maybe there's a release critical bug that they have left unhandled and that's blocking
migration to testing. If you find something that they could have done (better), it's time to tell them so that they
can improve for next time, and so that they have a better understanding of their responsibilities.

何も大きな問題を見つけなければ、新しいバージョンをアップロードします。そうでなければ、メンテナ

に修正したバージョンをアップロードするよう要請します。

7.5.2 Granting upload permissions to DMs

Debianメンテナーの鍵は debian-maintainersキーリングに追加され、Debian開発者は特定のパッケージに
関するアップロード権限をDMに許可することがあります。これは署名した dakコマンドを FTP-Masterに
よる debian-develへのアナウンスのとおりに ftp.upload.debian.orgにアップロードすることで行います。

このプロセスは dput-ngパッケージに含まれる dcutコマンドにより簡略化できます。 dputパッケージ

の dcutでは動作しないことに注意が必要です!

例:

dcut dm --uid 0xfedcba9876543210 --allow nano --deny bash

DMの鍵がキーリングパッケージに含まれていないが DDのローカルのキーリングに含まれている場合、
--forceオプションとスペースを含まないフィンガープリントを指定します。とりわけ 0xというプレフィ
クスをつけず、すべて大文字を指定します。

dcut --force dm --uid FEDCBA9876543210FEDCBA9876543210 --allow nano

7.5.3 新たな開発者を支持する (advocate)

Debianウェブサイトの開発者志願者の支持者になる (advocating a prospective developer)のページを参照し
てください。

7.5.4 新規メンテナ申請 (new maintainer applications)を取り扱う

Debianのウェブサイトにある申請管理者用チェックリスト (Checklist for Application Managers)を参照し
てください。

100 第 7章パッケージ化、そして…

https://lists.debian.org/debian-devel-announce/2012/09/msg00008.html
https://lists.debian.org/debian-devel-announce/2012/09/msg00008.html
https://www.debian.org/devel/join/nm-advocate
https://www.debian.org/devel/join/nm-amchecklist

101

第8章 国際化と翻訳

Debian がサポートしている自然言語の数は未だ増え続けています。あなたが英語圏のネイティブスピー
カーで他の言語を話さないとしても、国際化の問題について注意を払うことはメンテナとしてのあなたの

責務です (internationalizationの 'i'と 'n'の間に 18文字があるので i18nと略されます)。つまり、あなたが
英語のみのプログラムを扱っていて問題がない場合であっても、この章の大部分を読んでおく必要がある

ということです。

According to Introduction to i18n from Tomohiro KUBOTA, I18N (internationalization) means modification of
software or related technologies so that software can potentially handle multiple languages, customs, and other
differences, while L10N (localization) means implementation of a specific language for already-internationalized
software.

l10nと i18nは関連していますが、それぞれ関連する難しさについては違います。プログラムをユーザの
設定に応じて表示されるテキストの言語を変更するようにするのはあまり難しくはありませんが、実際に

メッセージを翻訳するのはとても時間がかかります。一方、文字のエンコード設定は些細な事ですが、複

数の文字エンコードを扱えるようなコードにするのはとても難しい問題です。

i18nの問題を横においたとしても、一般的なガイドラインは与えられておらず、移植作業用の builddのメ
カニズムと比較できるような、Debianでの l10n用の中心となるインフラは実際のところ存在していませ
ん。そのため、多くの作業は手動で行わねばなりません。

8.1 どの様にして Debianでは翻訳が取り扱われているか
パッケージに含まれている文章の翻訳の取り扱いは未だ手動であり、作業のやり方は翻訳を表示させたい

文の種類に因ります。

For program messages, the gettext infrastructure is used most of the time. Often the translation is handled upstream
within projects like the Free Translation Project, the GNOME Translation Project or the KDE Localization project.
The only centralized resources within Debian are the Central Debian translation statistics, where you can find some
statistics about the translation files found in the actual packages and download those files.

Package descriptions have translations since many years and Maintainers don't need to do anything special to
support translated package descriptions; translators should use the Debian Description Translation Project (DDTP).

For debconf templates, maintainers should use the po-debconf package to ease the work of translators. Some
statistics can be found on the Central Debian translation statistics site.

ウェブページについては、それぞれの l10nチームが対応する VCSにアクセスし、Debianの翻訳に関する
統計サイトから統計情報が取得できます。

Debianについての一般的なドキュメントは、作業は多少の差はあれウェブページと同じです (翻訳者は VCS
にアクセスします)。ですが、統計情報のページはありません。

https://www.debian.org/doc/manuals/intro-i18n/
https://translationproject.org/html/welcome.html
https://wiki.gnome.org/TranslationProject
https://l10n.kde.org/
https://www.debian.org/intl/l10n/
https://ddtp.debian.org/
https://www.debian.org/intl/l10n/

Debian Developer’s Reference,リリース 14.3

Another part of i18n work is package-specific documentation (man pages, info documents, other formats). At least
the man page translations are po-based as most other things mentioned above.

8.2 メンテナへの I18N & L10N FAQ
これはメンテナが i18n や l10n を考えるのにあたって直面するであろう問題の一覧です。読み進める間、
Debianでこれらの点について実際のコンセンサスは得られていないことを念頭においてください。これは
単にアドバイスです。出てきた問題についてもっと良い考えがある、あるいはいくかの点で賛同できない

という場合は、連絡をして頂いて構いません。そのことによって、この文章の質をさらに高めることがで

きます。

8.2.1 翻訳された文章を得るには

To translate package descriptions, you have nothing to do; the DDTP infrastructure will dispatch the material to
translate to volunteers with no need for interaction on your part.

For all other material (debconf templates, gettext files, man pages, or other documentation), the best solution is
to ask on debian-i18n for a translation in different languages. Some translation team members are subscribed to
this list, and they will take care of the needed coordination, to get the material translated and reviewed. Once they
are done, you will get your translated document from them in your mailbox or via a wishlist bugreport. It is also
recommended, to use the po-debconf tools for i18n integration.

8.2.2 どの様にして提供された翻訳をレビューするか

時折、あなたのパッケージ内の文章を訳して翻訳をパッケージに含めるように依頼する人が出てきます。

これはあなたがその言語に詳しくない場合、問題となり得ます。その文章を対応する l10nメーリングリス
トに投稿し、レビューを依頼するのが良い考えです。一旦レビューが終われば、翻訳の質に自信を持つで

しょうし、パッケージに含めるのにも安心を覚えるでしょう。

8.2.3 どの様にして翻訳してもらった文章を更新するか

古いままになっていた文章に対して翻訳文がある場合、元の文章を更新する度に、以前翻訳した人に新た

に変更した点に合わせて翻訳を更新してもらうように依頼する必要があります。この作業には時間がかか

ることを覚えておいてください―更新をレビューしてもらったりするには少なくとも 1週間はかかります。

翻訳者が応答してこない場合、対応する l10nメーリングリストに助力を願い出ましょう。すべてうまくい
かなかった場合は、翻訳した文中に翻訳がとにかく古い事の警告を入れておくの忘れないようにして、で

きれば読者がオリジナルの文章を参照するようにしましょう。

古くなっているからといって翻訳を全て削除するのは避けてください。非英語圏のユーザにとって何もド

キュメントが無いよりは古いドキュメントがある方が有益であることが往々にしてあります。

8.2.4 どの様にして翻訳関連のバグ報告を取り扱うか

最も良い解決策は開発元のバグという印を付けておいて (forward)、以前の翻訳者と関連するチーム (対応
する debian-l10n-XXXメーリングリスト)に転送することです。

102 第 8章国際化と翻訳

Debian Developer’s Reference,リリース 14.3

8.3 翻訳者への I18N & L10N FAQ
これを読み進める間、Debianにおいてこれらの点に関する一般的な手続きは存在していないこと、そしてい
かなる場合でもチームやパッケージメンテナと協調して作業する必要があることを念頭においてください。

8.3.1 どの様にして翻訳作業を支援するか

翻訳したい文章を選び、誰もまだ作業をしていないことを確認し (debian-l10n-XXXメーリングリストを参
照。日本語の場合は debian-doc@debian.or.jpを参照してください)、翻訳し、l10nメーリングリストで他の
ネイティブスピーカーにレビューをしてもらい、パッケージメンテナに提供します (次の段を参照)。

8.3.2 どの様にして提供した翻訳をパッケージに含めてもらうか

含めてもらう翻訳が正しいかどうかを提供する前に確認してください (l10nメーリングリストでレビュー
を依頼しましょう)。皆の時間を節約し、バグレポートに複数バージョンの同じ文章があるというカオス状
態を避けることになります。

最も良いやり方は、パッケージに対して翻訳を含めて通常のバグとして登録することです。忘れずに「patch」
や「l10n」タグを使い、翻訳が欠けていたとしてもプログラムの動作に支障は無いので「wishlist」以上の
重要度を使わないようにしましょう。

8.4 l10nに関する現状でのベストプラクティス
• メンテナとしては、翻訳については関連の l10nメーリングリストに尋ねること無くどの様な方法で
あれいじらないこと (レイアウトを変えることでさえしないこと)です。もしいじってしまうと、例
えばファイルのエンコーディングを破壊する危険があります。さらに、あなたが間違いだと思ってい

ることがその言語では正解である (または必要ですらある)ことがあり得ます。

• 翻訳者としては、元の文章に間違いを見つけた場合は必ず報告することです。翻訳者はしばしばその
文章の最も注意深い読者であり、翻訳者が見つけた間違いを報告しないのならば誰も報告しないで

しょう。

• いずれの場合でも、l10nに関する最も大きな問題は複数人の協調であり、誤解から小さな問題でフ
レームウォーを起こすのはとても簡単だということです。ですから、もし、あなたの話し相手と問題

が起こっている場合は、関連する l10nメーリングリストや debian-i18nメーリングリスト、さらにあ
るいは debian-develメーリングリストに助けを求めてください (ですが、ご注意を。l10n関連の議論
は debian-develでは頻繁にフレームウォーになります :)

• 何にせよ、協調は互いを尊敬しあうことによってのみ成し得ます。

8.3. 翻訳者への I18N & L10N FAQ 103

mailto:debian-doc@debian.or.jp

105

第9章 Debianメンテナツールの概要

この章には、メンテナが利用できるツールについて大まかな概要が含まれています。以下は完全なもので

も決定版的なものでもありませんが、よく使われているツールについての説明です。

Debianメンテナツールは、開発者を手助けし、重要な作業のために時間を作れるようにしてくれるもので
す。Larry Wallが言うように、やり方は一つではありません (there's more than one way to do it)。

Some people prefer to use high-level package maintenance tools and some do not. Debian is officially agnostic on
this issue; any tool that gets the job done is fine. Therefore, this section is not meant to stipulate to anyone which
tools they should use or how they should go about their duties of maintainership. Nor is it meant to endorse any
particular tool to the exclusion of a competing tool.

パッケージの説明文のほとんどは実際のパッケージの説明から取ったものです。より詳細な情報はパッケー

ジ内のドキュメントで確認できます。apt-cache showパッケージ名コマンドでも情報を得られます。

9.1 主要なツール
以下のツールはどのメンテナであっても、必ず必要とするものです。

9.1.1 dpkg-dev

dpkg-devは、パッケージを展開、ビルド、Debianソースパッケージをアップロードするのに必要なツー
ルを含んでいます (dpkg-sourceを含む)。これらのユーティリティはパッケージを作成・操作するのに必
要な基礎的で、低レイヤの機能を含んでいます。そのため、これらはあらゆる Debianメンテナにとって必
要不可欠なものです。

9.1.2 debconf

debconfは、パッケージを対話形式で設定できる一貫したインターフェイスを提供します。これはユーザ

インターフェイスに依存せず、エンドユーザがテキストのみのインターフェイス、HTMLインターフェイ
ス、ダイアログ形式のインターフェイスでパッケージを設定できます。新たなインターフェイスはモジュー

ルとして追加できます。

このパッケージに関するドキュメントは debconf-docパッケージ中で確認できます。

Many feel that this system should be used for all packages that require interactive configuration; see debconfによ
る設定管理. debconf is not currently required by Debian Policy, but that may change in the future.

Debian Developer’s Reference,リリース 14.3

9.1.3 fakeroot

fakerootは root特権をシミュレートします。これは rootになること無しにパッケージをビルドできるよ
うにしてくれます (パッケージは通常 rootの所有権でファイルをインストールしようとします)。fakeroot

をインストールしていれば、dpkg-buildpackageで自動的に利用します。

9.2 パッケージチェック (lint)用ツール
According to the Free On-line Dictionary of Computing (FOLDOC), lint is: "A Unix C language processor
which carries out more thorough checks on the code than is usual with C compilers." Package lint tools help
package maintainers by automatically finding common problems and policy violations in their packages.

9.2.1 lintian

lintianは Debianパッケージを解剖してバグやポリシー違反の情報を出力します。一般的なエラーへの
チェック同様に Debianポリシーの多くの部分を自動チェックする機能を含んでいます。

定期的に最新の lintianを unstableから取得し、パッケージを全てチェックするべきです。-iオプショ

ンは、各エラーや警告が何を意味しているのか、ポリシーを元に、詳細な説明を提供してくれ、一般的に

問題をどのように修正するべきかを説明してくれることに留意してください。

何時、どのようにして Lintianを使うのか、詳細についてはパッケージをテストするを参照してください。

あなたのパッケージに対して Lintian によって報告されたの問題の要約はすべて https://lintian.debian.org/
から確認することもできます。このレポートは、最新の lintianによる開発版ディストリビューション　

(unstable)全体についての出力を含んでいます。

9.2.2 lintian-brush

lintian-brush contains a set of scripts that can automatically fix more than 80 common lintian issues in Debian
packages.

It comes with a wrapper script that invokes the scripts, updates the changelog (if desired) and commits each change
to version control.

9.2.3 piuparts

piuparts is the .deb package installation, upgrading, and removal testing tool.

piuparts tests that .deb packages handle installation, upgrading, and removal correctly. It does this by creating
a minimal Debian installation in a chroot, and installing, upgrading, and removing packages in that environment,
and comparing the state of the directory tree before and after. piuparts reports any files that have been added,
removed, or modified during this process.

piuparts is meant as a quality assurance tool for people who create .deb packages to test them before they upload
them to the Debian archive.

106 第 9章 Debianメンテナツールの概要

https://lintian.debian.org/

Debian Developer’s Reference,リリース 14.3

9.2.4 debdiff

(devscriptsパッケージ、devscriptsより) debdiffは二つのパッケージのファイルのリストと controlファ
イルを比較します。前回のアップロードからバイナリパッケージ数が変わったことや、controlファイル内
で何が変わったのかなどに気付く手助けをしてくれるなど、簡単なリグレッションテストとなります。も

ちろん、報告される変更の多くは問題ありませんが、様々なアクシデントを防止するのに役立ってくれる

でしょう。

バイナリパッケージのペアに対して実行することができます:

debdiff package_1-1_arch.deb package_2-1_arch.deb

changesファイルのペアに対してさえも実行できます:

debdiff package_1-1_arch.changes package_2-1_arch.changes

より詳細については、debdiff 1を参照してください。

9.2.5 diffoscope

diffoscope provides in-depth comparison of files, archives, and directories.

diffoscope will try to get to the bottom of what makes files or directories different. It will recursively unpack
archives of many kinds and transform various binary formats into more human readable form to compare them.

Originally developed to compare two .deb files or two changes files nowadays it can compare two tarballs, ISO
images, or PDF just as easily and supports a huge variety of filetypes.

The differences can be shown in a text or HTML report or as JSON output.

9.2.6 duck

duck, the Debian Url ChecKer, processes several fields in the debian/control, debian/upstream, debian/
copyright, debian/patches/* and systemd.unit files and checks if URLs, VCS links and email address
domains found therein are valid.

9.2.7 adequate

adequate checks packages installed on the system and reports bugs and policy violations.

The following checks are currently implemented:

• broken symlinks

• missing copyright file

• obsolete conffiles

• Python modules not byte-compiled

• /bin and /sbin binaries requiring /usr/lib libraries

• missing libraries, undefined symbols, symbol size mismatches

9.2. パッケージチェック (lint)用ツール 107

Debian Developer’s Reference,リリース 14.3

• license conflicts

• program name collisions

• missing alternatives

• missing binfmt interpreters and detectors

• missing pkg-config dependencies

9.2.8 i18nspector

i18nspector is a tool for checking translation templates (POT), message catalogues (PO) and compiled message
catalogues (MO) files for common problems.

9.2.9 cme

cme is a tool from the libconfig-model-dpkg-perl package is an editor for dpkg source files with validation.
Check the package description to see what it can do.

9.2.10 licensecheck

licensecheck attempts to determine the license that applies to each file passed to it, by searching the start of the
file for text belonging to various licenses.

9.2.11 blhc

blhc is a tool which checks build logs for missing hardening flags.

9.3 debian/rulesの補助ツール
パッケージ構築ツールは debian/rulesファイルを書く作業を楽にしてくれます。これらが望ましい、あ

るいは望ましくない理由の詳細についてはヘルパースクリプトを参照してください。

9.3.1 debhelper

debhelper is a collection of programs that can be used in debian/rules to automate common tasks related
to building binary Debian packages. debhelper includes programs to install various files into your package,
compress files, fix file permissions, and integrate your package with the Debian menu system.

Unlike some approaches, debhelper is broken into several small, simple commands, which act in a consistent
manner. As such, it allows more fine-grained control than some of the other debian/rules tools.

ここに記すには一時的な、大量の小さな debhelperのアドオンパッケージがあります。apt-cache search

^dh-と実行することで一覧の多くを参照できます。

When choosing a debhelper compatibility level for your package, you should choose the highest compatibility
level that is supported in the most recent stable release. Only use a higher compatibility level if you need specific
features that are provided by that compatibility level that are not available in earlier levels.

108 第 9章 Debianメンテナツールの概要

Debian Developer’s Reference,リリース 14.3

In the past the compatibility level was defined in debian/compat, however nowadays it is much better to not use
that but rather to use a versioned build-dependency like debhelper-compat (=12).

9.3.2 dh-make

The dh-make package contains dh_make, a program that creates a skeleton of files necessary to build a Debian
package out of a source tree. As the name suggests, dh_make is a rewrite of debmake, and its template files use
dh_* programs from debhelper.

dh_makeによって生成された rulesファイルは、大抵の場合作業するパッケージに対して十分な基礎にはな
りますが、まだこれは下地でしかありません。メンテナに残っている責務は、生成されたファイルをきれ

いに整理して、完全に動作してポリシーに準拠したパッケージにすることです。

9.3.3 equivs

equivsはパッケージ作成用のもう一つのパッケージです。単純に依存関係を満たしたいだけのパッケージ

を作成する必要がある場合に、しばしばローカルでの使用を勧められます。時折、他のパッケージに依存

することだけが目的のパッケージ、「メタパッケージ (meta-packages)」を作る際にも使われます。

9.4 パッケージ作成ツール
The following packages help with the package building process, general driving of dpkg-buildpackage, as well
as handling supporting tasks.

9.4.1 git-buildpackage

git-buildpackageは、Debianソースパッケージを Gitリポジトリに挿入あるいはインポートし、Debian
パッケージを Gitリポジトリから生成、そして開発元での変更をリポジトリに統合するのに役立つ機能を
提供します。

これらのユーティリティは、Debian メンテナによる Git の利用を促進するインフラストラクチャを提供
します。これは、バージョンコントロールシステムの他の利点と同様に、stable、unstable、おそらく

experimentalディストリビューション用にパッケージに個々の Gitブランチを持つことができます。

9.4.2 debootstrap

debootstrapパッケージとスクリプトは、システムのどこででも Debianベースシステムをブートストラッ
プできるようにしてくれます。ベースシステムとは、操作するのに必要となる素の最小限パッケージ群を

意味し、それに加えてシステムの残りの部分をインストールします。

この様なシステムを持つことは、様々な面で役に立つでしょう。例えば、ビルドの依存関係をテストした

い場合に chrootでそのシステムの中に入ることができます。あるいは素のベースシステムにインストー

ルした際にパッケージがどのように振る舞うかをテストできます。chroot作成ツールはこのパッケージを
使います。以下を参照ください。

9.4. パッケージ作成ツール 109

Debian Developer’s Reference,リリース 14.3

9.4.3 pbuilder

pbuilder constructs a chrooted system, and builds a package inside the chroot. It is very useful to check that a
package's build dependencies are correct, and to be sure that unnecessary and wrong build dependencies will not
exist in the resulting package.

A related package is cowbuilder, which speeds up the build process using a COW filesystem on any standard
Linux filesystem.

9.4.4 sbuild

sbuildはもう一つの自動ビルドシステムです。同様に chrootされた環境を使うことが出来ます。単独で使う
ことも、分散ビルド環境のネットワークの一部として使うこともできます。文字通り、移植者たちによって利

用可能な全アーキテクチャのバイナリパッケージをビルドするのに使われているシステムの一部です。詳細

については wanna-buildを参照してください。それからシステムの動作については https://buildd.debian.org/
を参照してください。

9.5 パッケージのアップロード用ツール
以下のパッケージはパッケージを公式アーカイブにアップロードする作業を自動化、あるいは単純化して

くれるのに役立ちます。

9.5.1 dupload

dupload is a package and a script to automatically upload Debian packages to the Debian archive, to log the
upload, and to optionally send mail about the upload of a package. It supports various kinds of hooks to extend its
functionality, and can be configured for new upload locations or methods, although by default it provides various
hooks performing checks and comes configured with all Debian upload locations.

9.5.2 dput

The dput package and script do much the same thing as dupload, but in a different way. Out of the box it supports
to run dinstall in dry-run mode after the upload.

9.5.3 dcut

dcutスクリプト (dputパッケージの一部、dput 参照)は、ftpアップロードディレクトリからファイルを
削除するのに役立ちます。

9.6 メンテナンスの自動化
以下のツールは changelogのエントリや署名行の追加、Emacs内でのバグの参照から最新かつ公式の config.

subを使うようにするまで、様々なメンテナンス作業を自動化するのに役立ちます。

110 第 9章 Debianメンテナツールの概要

https://buildd.debian.org/

Debian Developer’s Reference,リリース 14.3

9.6.1 devscripts

devscripts is a package containing wrappers and tools that are very helpful for maintaining your Debian pack-
ages. Example scripts include debchange (or its alias, dch), which manipulates your debian/changelog file
from the command-line, and debuild, which is a wrapper around dpkg-buildpackage. The bts utility is also
very helpful to update the state of bug reports on the command line. uscan can be used to watch for new upstream
versions of your packages (see https://wiki.debian.org/debian/watch for more info on that). suspicious-source
outputs a list of files which are not common source files.

利用可能なスクリプトの全リストについては devscripts 1マニュアルページを参照してください。

9.6.2 reportbug

reportbug is a tool designed to make the reporting of bugs in Debian and derived distributions relatively painless.
Its features include:

• Integration with mutt and mh/nmh mail readers.

• Access to outstanding bug reports to make it easier to identify whether problems have already been reported.

• Automatic checking for newer versions of packages.

reportbug is designed to be used on systems with an installed mail transport agent; however, you can edit the
configuration file and send reports using any available mail server.

This package also includes the querybts script for browsing the Debian bug tracking system.

9.6.3 autotools-dev

autotools-dev contains best practices for people who maintain packages that use autoconf and/or automake.
Also contains canonical config.sub and config.guess files, which are known to work on all Debian ports.

9.6.4 dpkg-repack

dpkg-repack creates a Debian package file out of a package that has already been installed. If any changes have
been made to the package while it was unpacked (e.g., files in /etc were modified), the new package will inherit
the changes.

This utility can make it easy to copy packages from one computer to another, or to recreate packages that are
installed on your system but no longer available elsewhere, or to save the current state of a package before you
upgrade it.

9.6.5 alien

alienは、Debian、RPM (RedHat)、LSB (Linux Standard Base)、Solaris、Slackwareなどの各種バイナリパッ
ケージのパッケージ形式を変換します。

9.6. メンテナンスの自動化 111

https://wiki.debian.org/debian/watch
https://www.debian.org/Bugs/

Debian Developer’s Reference,リリース 14.3

9.6.6 dpkg-dev-el

dpkg-dev-el is an Emacs lisp package that provides assistance when editing some of the files in the debian

directory of your package. For instance, there are handy functions for listing a package's current bugs, and for
finalizing the latest entry in a debian/changelog file.

9.6.7 dpkg-depcheck

(devscriptsパッケージ、devscriptsより) dpkg-depcheckは、指定されたコマンドによって使われた全て
のパッケージを確認するため、コマンドを straceの下で実行します。

Debianパッケージについていうと、これは新しいパッケージの Build-Depends行を構成するのが必要に

なった際に役立ちます。dpkg-depcheckを通してビルド作業を実行すると、最初の大まかなビルドの依存

関係を良い形で得られます。例えば以下の様にします:

dpkg-depcheck -b debian/rules build

dpkg-depcheckは、特にパッケージが他のプログラムを実行するのに exec 2を使っている場合に実行時の
依存性を確認するのにも使えます。

より詳細については、dpkg-depcheck 1を参照してください。

9.6.8 debputy

The debputy tools is new since 2024. While its main purpose is to offer a new Debian package build paradigm, it
includes subcommands that can be used on any existing Debian package to validate the correctness of most of the
files in debian/*, and in many cases also automatically fix them.

To check correctness of files in debian/* run:

debputy lint --spellcheck

To format debian/control and debian/tests/control files

debputy reformat --style black

Using the reformat command obsoletes using wrap-and-sort -ast.

The debputy tool also includes a language server which, when integrated with a code editor, can give real-time
feedback on the correctness of files in debian/* while editing them.

For more information please see debputy 1.

9.7 移植用ツール
以下のツールが、移植作業者やクロスコンパイル作業に役立ちます。

112 第 9章 Debianメンテナツールの概要

Debian Developer’s Reference,リリース 14.3

9.7.1 dpkg-cross

dpkg-crossは、dpkgに似た方法でクロスコンパイルするためのライブラリとヘッダをインストールする

ツールです。さらに、dpkg-buildpackageおよび dpkg-shlibdepsの機能がクロスコンパイルをサポー

トするように拡張されます。

9.8 ドキュメントと情報について
以下のパッケージが、メンテナへの情報提供やドキュメントの作成に役立ちます。

9.8.1 debian-policy

The debian-policy package contains the Debian Policy Manual and related documents, which are:

• Debian Policy Manual

• Filesystem Hierarchy Standard (FHS)

• Debian Menu sub-policy

• Debian Perl sub-policy

• Debian configuration management specification

• Machine-readable debian/copyright specification

• Autopkgtest - automatic as-installed package testing

• Authoritative list of virtual package names

• Policy checklist for upgrading your packages

The Debian Policy Manual the policy relating to packages and details of the packaging mechanism. It covers
everything from required gcc options to the way the maintainer scripts (postinst etc.) work, package sections
and priorities, etc.

Also useful is the file /usr/share/doc/debian-policy/upgrading-checklist.txt.gz, which lists changes
between versions of policy.

9.8.2 doc-debian

doc-debian contains lots of useful Debian-specific documentation:

• Debian Linux Manifesto

• Constitution for the Debian Project

• Debian Social Contract

• Debian Free Software Guidelines

• Debian Bug Tracking System documentation

• Introduction to the Debian mailing lists

9.8. ドキュメントと情報について 113

Debian Developer’s Reference,リリース 14.3

9.8.3 developers-reference

The developers-reference package contains the document you are reading right now, the Debian Developer's
Reference, a set of guidelines and best practices which has been established by and for the community of Debian
developers.

9.8.4 maint-guide

The maint-guide package contains the Debian New Maintainers' Guide.

This document tries to describe the building of a Debian package to ordinary Debian users and prospective devel-
opers. It uses fairly non-technical language, and it's well covered with working examples.

9.8.5 debmake-doc

The debmake-doc package contains the Guide for Debian Maintainers.

This document is newer than Debian New Maintainers' Guide and intends to replace it. The Guide for Debian
Maintainers caters to those learning Debian packaging and covers a wide range of topics and tools, along with
plenty of examples about various types of packaging issues.

9.8.6 packaging-tutorial

This tutorial is an introduction to Debian packaging. It teaches prospective developers how to modify existing
packages, how to create their own packages, and how to interact with the Debian community.

In addition to the main tutorial, it includes three practical sessions on modifying the grep package, and packaging
the gnujump game and a Java library.

9.8.7 how-can-i-help

how-can-i-help shows opportunities for contributing to Debian. how-can-i-help hooks into APT to list oppor-
tunities for contributions to Debian (orphaned packages, bugs tagged 'newcomer') for packages installed locally,
after each APT invocation. It can also be invoked directly, and then lists all opportunities for contribution (not just
the new ones).

9.8.8 docbook-xml

docbook-xml provides the DocBook XML DTDs, which are commonly used for Debian documentation (as is the
older debiandoc SGML DTD).

docbook-xslパッケージは、ソースをビルドして様々な出力フォーマットに整形する XSLファイルを提
供します。XSLスタイルシートを使うには xsltprocのような XSLTプロセッサが必要になります。スタ
イルシートのドキュメントは各種 docbook-xsl-doc-*パッケージで確認できます。

FOから PDFを生成するには、xmlroffや fopのような FOプロセッサが必要です。他に DocBook XML
から PDFを生成するツールとしては dblatexがあります。

114 第 9章 Debianメンテナツールの概要

Debian Developer’s Reference,リリース 14.3

9.8.9 debiandoc-sgml

debiandoc-sgmlは Debianのドキュメントで一般的に使われているDebianDoc SGML DTDを提供します。
しかし、現在は非推奨 (deprecated)となっています (代わりに docbook-xmlか python3-sphinxを使うよ

うにしてください)。これも、ソースをビルドして様々な出力フォーマットに整形するスクリプトを提供し
ます。

9.8.10 debian-keyring

Debian開発者および Debianメンテナの公開 GPG鍵を含んでいます。詳細については公開鍵をメンテナ
ンスするとパッケージ内のドキュメントを参照してください。

9.8.11 debian-el

debian-elは、Debianバイナリパッケージを参照する Emacsモードを提供します。これを使うと、パッ
ケージを展開しなくても実行できるようになります。

9.8. ドキュメントと情報について 115

	この文書が扱う範囲について
	Applying to Become a Member
	さあ、はじめよう
	Debian メンター (mentors) とスポンサー (sponsors) について
	Registering as a Debian member

	Debian 開発者の責務
	パッケージメンテナの責務
	次期安定版 (stable) リリースへの作業
	安定版 (stable) にあるパッケージをメンテナンスする
	リリースクリティカルバグに対処する
	開発元/上流 (upstream) の開発者との調整

	管理者的な責務
	あなたの Debian に関する情報をメンテナンスする
	公開鍵をメンテナンスする
	投票をする
	優雅に休暇を取る
	脱退について
	リタイア後に再加入する

	Resources for Debian Members
	メーリングリスト
	利用の基本ルール
	開発の中心となっているメーリングリスト
	特別なメーリングリスト
	新規に開発関連のメーリングリストの開設を要求する

	IRC チャンネル
	ドキュメント化
	Debian のマシン群
	バグ報告サーバ
	ftp-master サーバ
	www-master サーバ
	people ウェブサーバ
	salsa.debian.org: Git repositories and collaborative development platform
	GitHub.com: Submitting pull requests to upstream repositories
	複数のディストリビューション利用のために chroot を使う

	開発者データベース
	Debian アーカイブ
	セクション
	アーキテクチャ
	パッケージ
	ディストリビューション
	安定版 (stable)、テスト版 (testing)、不安定版 (unstable)
	テスト版ディストリビューションについてのさらなる情報
	試験版 (experimental)

	リリースのコードネーム

	Debian ミラーサーバ
	Incoming システム
	パッケージ情報
	ウェブ上から
	dak ls ユーティリティ

	Debian パッケージトラッカー
	Developer's packages overview
	Debian での FusionForge の導入例: Alioth
	Goodies for Debian Members

	パッケージの取扱い方
	新規パッケージ
	パッケージの変更を記録する
	パッケージをテストする
	ソースパッケージの概要
	ディストリビューションを選ぶ
	特別な例: 安定版 (stable) と 旧安定版 (oldstable) ディストリビューションへアップロードする
	Special case: the stable-updates suite
	特別な例: testing/testing-proposed-updates へアップロードする

	パッケージをアップロードする
	Source and binary uploads
	ftp-master にアップロードする
	遅延アップロード
	セキュリティアップロード
	他のアップロードキュー
	Notifications

	パッケージのセクション、サブセクション、優先度を指定する
	バグの取扱い
	バグの監視
	バグへの対応
	バグを掃除する
	新規アップロードでバグがクローズされる時
	セキュリティ関連バグの取扱い
	セキュリティ追跡システム
	秘匿性
	セキュリティ勧告
	セキュリティ問題に対処するパッケージを用意する
	修正したパッケージをアップロードする

	パッケージの移動、削除、リネーム、放棄、引き取り、再導入
	パッケージの移動
	パッケージの削除
	Incoming からパッケージを削除する

	パッケージをリプレースあるいはリネームする
	パッケージを放棄する
	パッケージを引き取る
	パッケージの再導入

	移植作業、そして移植できるようにすること
	移植作業者に対して協力的になる
	移植作業者のアップロード (porter upload) に関するガイドライン
	再コンパイル、あるいは binary-only NMU
	あなたが移植作業者の場合、source NMU を行う時は何時か

	移植用のインフラと自動化
	メーリングリストとウェブページ
	移植用ツール
	wanna-build

	あなたのパッケージが移植可能なものではない場合
	non-free のパッケージを auto-build 可能であるとマークする

	Non-Maintainer Upload (NMU)
	いつ、どうやって NMU を行うか
	NMU と debian/changelog
	DELAYED/ キューを使う
	メンテナの視点から見た NMU
	ソース NMU vs バイナリのみの NMU (binNMU)
	NMU と QA アップロード
	NMU とチームアップロード

	Package Salvaging
	When a package is eligible for package salvaging
	How to salvage a package

	共同メンテナンス
	テスト版ディストリビューション
	基本
	不安定版からの更新
	時代遅れ (Out-of-date)
	テスト版からの削除
	循環依存
	テスト版 (testing) にあるパッケージへの影響
	詳細について

	直接テスト版を更新する
	よく聞かれる質問とその答え (FAQ)
	リリースクリティカルバグとは何ですか、どうやって数えるのですか?
	どのようにすれば、他のパッケージを壊す可能性があるパッケージをテスト版 (testing) へインストールできますか?

	The Stable backports archive
	基本
	Exception to the testing-first rule
	Who can maintain packages in the stable-backports archive?
	When can one start uploading to stable-backports?
	How long must a package be maintained when uploaded to stable-backports?
	How often shall one upload to stable-backports?
	How can one learn more about backporting?

	パッケージ化のベストプラクティス
	debian/rules についてのベストプラクティス
	ヘルパースクリプト
	複数のバイナリパッケージ

	debian/control のベストプラクティス
	パッケージ説明文の基本的なガイドライン
	パッケージの概要、あるいは短い説明文
	長い説明文 (long description)
	開発元のホームページ
	バージョン管理システムの場所
	Vcs-Browser
	Vcs-*

	debian/changelog のベストプラクティス
	役立つ changelog のエントリを書く
	Selecting the upload urgency
	changelog のエントリに関するよくある誤解
	changelog のエントリ中のよくある間違い
	NEWS.Debian ファイルで changelog を補足する

	セキュリティに関するベストプラクティス
	メンテナスクリプトのベストプラクティス
	debconf による設定管理
	debconf を乱用しない
	作者と翻訳者に対する雑多な推奨
	正しい英語を書く
	翻訳者へ丁寧に接する
	誤字やミススペルを修正する際に fuzzy を取る
	インターフェイスについて仮定をしない
	一人称を使わない
	性差に対して中立であれ

	テンプレートのフィールド定義
	Type
	string
	password
	boolean
	select
	multiselect
	note
	text
	error

	Description: short および extended 説明文
	Choices
	Default

	Template fields specific style guide
	Type フィールド
	Description フィールド
	String/password テンプレート
	Boolean テンプレート
	Select/Multiselect
	Note

	Choices フィールド
	Default フィールド

	国際化
	debconf の翻訳を取り扱う
	ドキュメントの国際化

	Best practices for debian/patches
	パッケージ化に於ける一般的なシチュエーション
	autoconf/automake を使っているパッケージ
	ライブラリ
	ドキュメント化
	特定の種類のパッケージ
	アーキテクチャ非依存のデータ
	ビルド中に特定のロケールが必要
	移行パッケージを deboprhan に適合するようにする
	.orig.tar.{gz,bz2,xz} についてのベストプラクティス
	手が入れられていないソース (Pristine source)
	upstream のソースをパッケージしなおす
	バイナリファイルの変更

	デバッグパッケージのベストプラクティス
	Automatically generated debug packages
	Manual -dbg packages

	メタパッケージのベストプラクティス

	パッケージ化、そして…
	バグ報告
	一度に大量のバグを報告するには (mass bug filing)
	Usertag

	品質維持の努力
	日々の作業
	バグ潰しパーティ (BSP)

	他のメンテナに連絡を取る
	活動的でない、あるいは連絡が取れないメンテナに対応する
	Debian 開発者候補に対応する
	パッケージのスポンサーを行う
	新しいパッケージのスポンサーを行う
	既存パッケージの更新をスポンサーする

	Granting upload permissions to DMs
	新たな開発者を支持する (advocate)
	新規メンテナ申請 (new maintainer applications) を取り扱う

	国際化と翻訳
	どの様にして Debian では翻訳が取り扱われているか
	メンテナへの I18N & L10N FAQ
	翻訳された文章を得るには
	どの様にして提供された翻訳をレビューするか
	どの様にして翻訳してもらった文章を更新するか
	どの様にして翻訳関連のバグ報告を取り扱うか

	翻訳者への I18N & L10N FAQ
	どの様にして翻訳作業を支援するか
	どの様にして提供した翻訳をパッケージに含めてもらうか

	l10n に関する現状でのベストプラクティス

	Debian メンテナツールの概要
	主要なツール
	dpkg-dev
	debconf
	fakeroot

	パッケージチェック (lint) 用ツール
	lintian
	lintian-brush
	piuparts
	debdiff
	diffoscope
	duck
	adequate
	i18nspector
	cme
	licensecheck
	blhc

	debian/rules の補助ツール
	debhelper
	dh-make
	equivs

	パッケージ作成ツール
	git-buildpackage
	debootstrap
	pbuilder
	sbuild

	パッケージのアップロード用ツール
	dupload
	dput
	dcut

	メンテナンスの自動化
	devscripts
	reportbug
	autotools-dev
	dpkg-repack
	alien
	dpkg-dev-el
	dpkg-depcheck
	debputy

	移植用ツール
	dpkg-cross

	ドキュメントと情報について
	debian-policy
	doc-debian
	developers-reference
	maint-guide
	debmake-doc
	packaging-tutorial
	how-can-i-help
	docbook-xml
	debiandoc-sgml
	debian-keyring
	debian-el

